守护进程和守护线程

对于JAVA而言,一般一个应用程序只有一个进程——JVM。除非在代码里面另外派生或者开启了新进程。

而线程,当然是由进程开启的。当开启该线程的进程离开时,线程也就不复存在了。

所以,对于JAVA而言,线程是完全可以由自己的API自由产生。例如new Thread().但是进程就不同,必须通过调用OS的API,如Runtime.getRuntime.exec()。 所以说,进程是OS级别的概念。

守护线程和用户线程的区别:

二者其实基本上是一样的。唯一的区别在于JVM何时离开。

用户线程:当存在任何一个用户线程未离开,JVM是不会离开的。

守护线程:如果只剩下守护线程未离开,JVM是可以离开的。

在Java中,制作守护线程非常简单,直接利用.setDaemon(true)

在linux或者unix操作系统中在系统的引导的时候会开启很多服务,这些服务就叫做守护进程。为了增加灵活性,root可以选择系统开启的模式,这些模式叫做运行级别,每一种运行级别以一定的方式配置系统。 守护进程是脱离于终端并且在后台运行的进程。守护进程脱离于终端是为了避免进程在执行过程中的信息在任何终端上显示并且进程也不会被任何终端所产生的终端信息所打断。

守护进程简介  守护进程,也就是通常说的Daemon进程,是Linux中的后台服 务进程。它是一个生存期较长的进程,通常独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程常常在系统引导装入时启动,在系统关 闭时终止。Linux系统有很多守护进程,大多数服务都是通过守护进程实现的,同时,守护进程还能完成许多系统任务,例如,作业规划进程crond、打印 进程lqd等(这里的结尾字母d就是Daemon的意思)。

  由于在Linux中,每一个系统与用户进行交流的界面称为终端,每一个从此终端开始运行的进程都会依附于这个终端,这个终端就称为这些进程的控 制终端,当控制终端被关闭时,相应的进程都会自动关闭。但是守护进程却能够突破这种限制,它从被执行开始运转,直到整个系统关闭时才退出。如果想让某个进 程不因为用户或终端或其他地变化而受到影响,那么就必须把这个进程变成一个守护进程。

创建守护进程

 创建子进程,父进程退出

  这是编写守护进程的第一步。由于守护进程是脱离控制终端的,因此,完成第一步后就会在Shell终端里造成一程序已经运行完毕的假象。之后的所有工作都在子进程中完成,而用户在Shell终端里则可以执行其他命令,从而在形式上做到了与控制终端的脱离。

  在Linux中父进程先于子进程退出会造成子进程成为孤儿进程,而每当系统发现一个孤儿进程时,就会自动由1号进程(init)收养它,这样,原先的子进程就会变成init进程的子进程。

在子进程中创建新会话

  这个步骤是创建守护进程中最重要的一步,虽然它的实现非常简单,但它的意义却非常重大。在这里使用的是系统函数setsid,在具体介绍setsid之前,首先要了解两个概念:进程组和会话期

  进程组:是一个或多个进程的集合。进程组有进程组ID来唯一标识。除了进程号(PID)之外,进程组ID也是一个进程的必备属性。每个进程组都有一个组长进程,其组长进程的进程号等于进程组ID。且该进程组ID不会因组长进程的退出而受到影响。

  会话周期:会话期是一个或多个进程组的集合。通常,一个会话开始于用户登录,终止于用户退出,在此期间该用户运行的所有进程都属于这个会话期。

  接下来就可以具体介绍setsid的相关内容:

  (1)setsid函数作用:

  setsid函数用于创建一个新的会话,并担任该会话组的组长。调用setsid有下面的3个作用:

  让进程摆脱原会话的控制

  让进程摆脱原进程组的控制

  让进程摆脱原控制终端的控制

  那么,在创建守护进程时为什么要调用setsid函数呢?由于创建守护进程的第一步调用了fork函数来创建子进程,再将父进程退出。由于在调用了fork函数时,子进程全盘拷贝了父进程的会话期、进程组、控制终端等,虽然父进程退出了,但会话期、进程组、控制终端等并没有改变,因此,这还不是真正意义上的独立开来,而setsid函数能够使进程完全独立出来,从而摆脱其他进程的控制。

改变当前目录为根目录

  这一步也是必要的步骤。使用fork创建的子进程继承了父进程的当前工作目录。由于在进程运行中,当前目录所在的文件系统(如“/mnt/usb”)是不能卸载的, 这对以后的使用会造成诸多的麻烦(比如系统由于某种原因要进入单用户模式)。因此,通常的做法是让"/"作为守护进程的当前工作目录,这样就可以避免上述 的问题,当然,如有特殊需要,也可以把当前工作目录换成其他的路径,如/tmp。改变工作目录的常见函数式chdir。

重设文件权限掩码

  文件权限掩码是指屏蔽掉文件权限中的对应位。比如,有个文件权限掩码是050,它就屏蔽了文件组拥有者的可读与可执行权限。由于使用fork函数新建的子进程继承了父进程的文件权限掩码,这就给该子进程使用文件带来了诸多的麻烦。因此,把文件权限掩码设置为0,可以大大增强该守护进程的灵活性。设置文件权限掩码的函数是umask。在这里,通常的使用方法为umask(0)。

关闭文件描述符

  同文件权限码一样,用fork函数新建的子进程会从父进程那里继承一些已经打开了的文件。这些被打开的文件可能永远不会被守护进程读写,但它们一样消耗系统资源,而且可能导致所在的文件系统无法卸下。

  在上面的第二步之后,守护进程已经与所属的控制终端失去了联系。因此从终端输入的字符不可能达到守护进程,守护进程中用常规方法(如printf)输出的字符也不可能在终端上显示出来。所以,文件描述符为0、1和2 的3个文件(常说的输入、输出和报错)已经失去了存在的价值,也应被关闭。通常按如下方式关闭文件描述符:

  ===============================

  for(i=0;i<MAXFILE;i++)

  close(i);

  ===============================

守护进程退出处理

  当用户需要外部停止守护进程运行时,往往会使用 kill命令停止该守护进程。所以,守护进程中需要

  编码来实现kill发出的signal信号处理,达到进程的正常退出。

  ===============================

  signal(SIGTERM, sigterm_handler);

  void sigterm_handler(int arg)

  {

  _running = 0;

  }

  ===============================

  这样,一个简单的守护进程就建立起来了。

  实现守护进程的完整实例(每隔10s在/tmp/dameon.log中写入一句话):

复制代码

#include<stdio.h>#include<stdlib.h>#include<string.h>#include<fcntl.h>#include<sys/types.h>#include<unistd.h>#include<sys/wait.h>#include <signal.h>#define MAXFILE 65535volatile sig_atomic_t _running = 1;int main(){pid_t pc;int i,fd,len;char *buf="this is a Dameon\n";len = strlen(buf);pc = fork(); //第一步if(pc<0){printf("error fork\n");exit(1);}else if(PC>0)exit(0);setsid(); //第二步chdir("/"); //第三步umask(0); //第四步for(i=0;i<MAXFILE;i++) //第五步close(i);signal(SIGTERM, sigterm_handler);while( _running ){if((fd=open("/tmp/dameon.log",O_CREAT|O_WRONLY|O_APPEND,0600))<0){perror("open");exit(1);}write(fd,buf,len);close(fd);usleep(10*1000); //10毫秒}}void sigterm_handler(int arg){_running = 0;}

复制代码

linux守护进程列表

amd:自动安装NFS(网络文件系统)守侯进程

  apmd:高级电源治理

  Arpwatch:记录日志并构建一个在LAN接口上看到的以太网地址和ip地址对数据库

  Autofs:自动安装治理进程automount,与NFS相关,依靠于NIS

  Bootparamd:引导参数服务器,为LAN上的无盘工作站提供引导所需的相关信息

  crond:linux下的计划任务

  Dhcpd:启动一个DHCP(动态IP地址分配)服务器

  Gated:网关路由守候进程,使用动态的OSPF路由选择协议

  Httpd:WEB服务器

  Inetd:支持多种网络服务的核心守候程序

  Innd:Usenet新闻服务器

  Linuxconf:答应使用本地WEB服务器作为用户接口来配置机器

  Lpd:打印服务器

  Mars-nwe:mars-nwe文件和用于Novell的打印服务器

  Mcserv:Midnight命令文件服务器

  named:DNS服务器

  netfs:安装NFS、Samba和NetWare网络文件系统

  network:激活已配置网络接口的脚本程序

  nfs:打开NFS服务

  nscd:nscd(Name Switch Cache daemon)服务器,用于NIS的一个支持服务,它高速缓存用户口令和组成成员关系

  portmap:RPC portmap治理器,与inetd类似,它治理基于RPC服务的连接

  postgresql:一种SQL数据库服务器

  routed:路由守候进程,使用动态RIP路由选择协议

  rstatd:一个为LAN上的其它机器收集和提供系统信息的守候程序

  ruserd:远程用户定位服务,这是一个基于RPC的服务,它提供关于当前记录到LAN上一个机器日志中的用户信息

  rwalld:激活rpc.rwall服务进程,这是一项基于RPC的服务,答应用户给每个注册到LAN机器上的其他终端写消息

  rwhod:激活rwhod服务进程,它支持LAN的rwho和ruptime服务

  sendmail:邮件服务器sendmail

  smb:Samba文件共享/打印服务

  snmpd:本地简单网络治理候进程

  squid:激活代理服务器squid

  syslog:一个让系统引导时起动syslog和klogd系统日志守候进程的脚本

  xfs:X Window字型服务器,为本地和远程X服务器提供字型集

  xntpd:网络时间服务器

  ypbind:为NIS(网络信息系统)客户机激活ypbind服务进程

  yppasswdd:NIS口令服务器

  ypserv:NIS主服务器

  gpm:管鼠标的

  identd:AUTH服务,在提供用户信息方面与finger类似

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439645.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Coursera自动驾驶课程第11讲:2D Object Detection

在上一讲《Coursera自动驾驶课程第10讲&#xff1a;Feedforward Neural Networks》中我们学习了神经网络的基础知识&#xff0c;包括损失函数&#xff0c;梯度下降&#xff0c;正则化&#xff0c;卷积网络等。 本讲我们将学习深度学习的一个重要应用&#xff1a;图像目标检测。…

Coursera自动驾驶课程第12讲:Semantic Segmentation

在上一讲《Coursera自动驾驶课程第11讲&#xff1a;2D Object Detection》我们学习了深度学习的一个重要应用&#xff1a;目标检测。 本讲我们将学习深度学习的另一个重要应用&#xff1a;语义分割。这是图片像素级的一个重要应用。 B站视频链接&#xff1a;https://www.bili…

多线程知识梳理(2) - 并发编程的艺术笔记

layout: post title: 《Java并发编程的艺术》笔记 categories: Java excerpt: The Art of Java Concurrency Programming. <img src"http://upload-images.jianshu.io/upload_images/658453-a94405da52987372.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240…

Coursera自动驾驶课程第13讲:Least Squares

在上一讲《Coursera自动驾驶课程第12讲&#xff1a;Semantic Segmentation》我们学习了深度学习的另一个重要应用&#xff1a;语义分割。至此&#xff0c;本课程的视觉感知模块就介绍完了。 从本讲开始&#xff0c;我们将学习一个新的模块&#xff0c;也是本课程的第三个模块&…

Coursera自动驾驶课程第14讲:Linear and Nonlinear Kalman Filters

在上一讲《Coursera自动驾驶课程第13讲&#xff1a;Least Squares》我们学习了最小二乘法相关知识。 本讲我们将学习20世纪最著名的一个算法&#xff1a;卡尔曼滤波。具体包括线性卡尔曼滤波&#xff08;KF&#xff09;&#xff0c;扩展卡尔曼滤波(EKF)&#xff0c;误差状态卡…

详解两阶段3D目标检测网络 Voxel R-CNN:Towards High Performance Voxel-based 3D Object Detection

本文介绍一篇两阶段的3D目标检测网络&#xff1a;Voxel R-CNN&#xff0c;论文已收录于AAAI 2021。 这里重点是理解本文提出的 Voxel RoI pooling。 论文链接为&#xff1a;https://arxiv.org/pdf/2012.15712.pdf 项目链接为&#xff1a;https://github.com/djiajunustc/Voxe…

java容器类1:Collection,List,ArrayList,LinkedList深入解读

1、 Iterable 与 Iterator Iterable 是个接口&#xff0c;实现此接口使集合对象可以通过迭代器遍历自身元素. public interface Iterable<T> 修饰符和返回值方法名描述Iterator<T>iterator()返回一个内部元素为T类型的迭代器default voidforEach(Consumer<?…

无限场景开放式仿真器 PGDrive:Improving the Generalization of End-to-End Driving through Procedural Generation

本文介绍一个拥有无限场景开放式驾驶仿真器&#xff1a;PGDrive&#xff0c;通过 Procedural Generation 技术可以生成无限多的驾驶场景&#xff0c;由香港中文大学周博磊团队开发。 论文地址&#xff1a;https://arxiv.org/pdf/2012.13681.pdf 项目地址&#xff1a;https://…

java容器类2:Map及HashMap深入解读

Java的编程过程中经常会和Map打交道&#xff0c;现在我们来一起了解一下Map的底层实现&#xff0c;其中的思想结构对我们平时接口设计和编程也有一定借鉴作用。(以下接口分析都是以jdk1.8源码为参考依据) 1. Map An object that maps keys to values. A map cannot contain du…

两阶段3D目标检测网络 SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point Cloud

本文介绍一篇两阶段的3D目标检测网络&#xff1a;SIENet。 这里重点是理解本文提出的 Hybrid-Paradigm Region Proposal Network 和 Spatial Information Enhancement module。 论文链接为&#xff1a;https://arxiv.org/abs/2103.15396 项目链接为&#xff1a;https://githu…

java容器类3:set/HastSet/MapSet深入解读

介绍 Set&#xff1a;集合&#xff0c;是一个不包含重复数据的集合。&#xff08;A collection that contains no duplicate elements. &#xff09; set中最多包含一个null元素&#xff0c;否者包含了两个相同的元素&#xff0c;不符合定义。 上一篇学习了Java中的容器类的一…

Bandit算法原理及Python实战

目录 1&#xff09;什么是Bandit算法 为选择而生。 Bandit算法与推荐系统 怎么选择Bandit算法&#xff1f; 2)常用Bandit算法 Thompson sampling算法 UCB算法 Epsilon-Greedy算法 Greedy算法 3&#xff09;Bandit算法Python实战 参考资料&#xff1a; 推荐系统里面有…

ava容器类4:Queue深入解读

Collection的其它两大分支&#xff1a;List和Set在前面已近分析过&#xff0c;这篇来分析一下Queue的底层实现。 前三篇关于Java容器类的文章&#xff1a; java容器类1&#xff1a;Collection,List,ArrayList,LinkedList深入解读 java容器类2&#xff1a;Map及HashMap深入解…

Waymo离线点云序列3D物体检测网络 (3D Auto Labeling): Offboard 3D Object Detection from Point Cloud Sequences

本文介绍一篇Waymo基于点云序列的3D物体检测网络&#xff1a;3D Auto Labeling&#xff0c;论文已收录于CVPR 2021。 这里重点是理解本文提出的 Object-centric Auto Labeling。 论文链接为&#xff1a;https://arxiv.org/abs/2103.05073 2021-09-02补充&#xff1a;本文作者…

Waymo自动驾驶数据集介绍与使用教程

本文将对Waymo自动驾驶数据集&#xff08;Waymo Open Dataset&#xff09;进行介绍。 论文链接为&#xff1a;https://arxiv.org/abs/1912.04838v7 项目链接为&#xff1a;https://github.com/waymo-research/waymo-open-dataset 数据集链接为&#xff1a;https://waymo.com…

Java 并发基础——线程安全性

线程安全&#xff1a;多个线程访问某个类时&#xff0c;不管运行时环境采用何种调度方式或者这些线程将如何交替执行&#xff0c;并且在主调代码中不需要任何额外的同步或协调&#xff0c;这个类都能表现出正确的行为&#xff0c;那么久称这个类是线程安全的。 在线程安全类中封…

详解一阶段3D物体检测网络 SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud

本文介绍一篇一阶段的3D物体检测网络&#xff1a;SE-SSD&#xff0c;论文已收录于 CVPR 2021。 这里重点是理解本文提出的 Consistency Loss 、Orientation-Aware Distance-IoU Loss、Shape-Aware Data Augmentation。 论文链接为&#xff1a;https://arxiv.org/pdf/2104.0980…

详解3D点云分割网络 Cylindrical and Asymmetrical 3D Convolution Networksfor LiDAR Segmentation

本文介绍一篇3D点云分割网络&#xff1a;Cylinder3D&#xff0c;论文已收录于 CVPR 2021。 这里重点是理解本文提出的 Cylindrical Partition 和 Asymmetrical 3D Convolution Network。 论文链接为&#xff1a;https://arxiv.org/pdf/2011.10033.pdf 项目链接为&#xff1a;…

自动驾驶3D物体检测研究综述 3D Object Detection for Autonomous Driving: A Survey

本文介绍一篇最新的自动驾驶3D物体检测研究综述&#xff08;2021年6月份发布&#xff09;&#xff0c;来源于中国人民大学&#xff0c;论文共26页&#xff0c;99篇参考文献。 论文链接为&#xff1a;https://arxiv.org/pdf/2106.10823.pdf 0. Abstract 自动驾驶被看作是避免人…

Java中接口的多继承

我们知道Java的类只能继承一个类&#xff0c;但可以实现多个接口。但是你知道么&#xff1f;Java中的接口却可以继承多个接口。本文就来说一说Java中接口的多继承。 进入主题之前&#xff0c;先扩展一下。Java为什么只支持单继承呢&#xff1f; 我们不妨假设Java支持多继承&a…