第二节:深入剖析Thread的五大方法、数据槽、内存栅栏。

一. Thread及其五大方法

   Thread是.Net最早的多线程处理方式,它出现在.Net1.0时代,虽然现在已逐渐被微软所抛弃,微软强烈推荐使用Task(后面章节介绍),但从多线程完整性的角度上来说,我们有必要了解下N年前多线程的是怎么处理的,以便体会.Net体系中多线程处理方式的进化。

  Thread中有五大方法,分别是:Start、Suspend、Resume、Intterupt、Abort

  ①.Start:开启线程

  ②.Suspend:暂停线程

  ③.Resume:恢复暂停的线程

  ④.Intterupt:中断线程(会抛异常,提示线程中断)

  ⑤.Abort:销毁线程

    这五大方法使用起来,也比较简单,下面贴一段代码,体会一下如何使用即可。

 

  在这里补充一下,在该系列中,很多测试代码中看到TestThread0、TestThread、TestThread2,分别对应无参、一个参数、两个参数的耗时方法,代码如下:

复制代码

 1   /// <summary>2         /// 执行动作:耗时而已3         /// </summary>4         private void TestThread0()5         {6             Console.WriteLine("线程开始:当前线程的id为:{0},当前时间为:{1},", System.Threading.Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss:fff"));7             long sum = 0;8             for (int i = 1; i < 999999999; i++)9             {
10                 sum += i;
11             }
12             Console.WriteLine("线程结束:当前线程的id为::{0},当前时间为:{1}", System.Threading.Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss:fff"));
13         }
14 
15         /// <summary>
16         /// 执行动作:耗时而已
17         /// </summary>
18         private void TestThread(string threadName)
19         {
20             Console.WriteLine("线程开始:线程名为:{2},当前线程的id为:{0},当前时间为:{1},", System.Threading.Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss:fff"), threadName);
21             long sum = 0;
22             for (int i = 1; i < 999999999; i++)
23             {
24                 sum += i;
25             }
26             Console.WriteLine("线程结束:线程名为:{2},当前线程的id为::{0},当前时间为:{1}", System.Threading.Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss:fff"), threadName);
27         }
28 
29         /// <summary>
30         /// 执行动作:耗时而已
31         /// </summary>
32         private void TestThread2(string threadName1, string threadName2)
33         {
34             Console.WriteLine("线程开始:线程名为:{2}和{3},当前线程的id为:{0},当前时间为:{1},", System.Threading.Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss:fff"), threadName1, threadName2);
35             long sum = 0;
36             for (int i = 1; i < 999999999; i++)
37             {
38                 sum += i;
39             }
40             Console.WriteLine("线程结束:线程名为:{2}和{3},当前线程的id为::{0},当前时间为:{1}", System.Threading.Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss:fff"), threadName1, threadName2);
41         }

复制代码

 

二. 从源码角度分析Thread类

(1)  分析Thread类的源码,发现其构造函数有两类,分别是ThreadStart和ParameterizedThreadStart类,

 其中

  ①:ThreadStart类,是无参无返回值的委托。

  ②:ParameterizedThreadStart类,是有一个object类型参数但无返回值的委托.

使用方法:

  ①:针对ThreadStart类, ThreadStart myTs = () => TestThread(name);  然后再把myTs传入Thread的构造函数中

  ②:针对ParameterizedThreadStart类,ParameterizedThreadStart myTs = o => this.TestThread(o.ToString());  然后再把myTs传入Thread的构造函数中

  注:该方式存在拆箱和装箱的转换问题,不建议这么使用

通用写法

     Thread t = new Thread(() =>

    {

       Console.Write("333");

    });

    t.Start();

无须考虑Thread的构造函数,也不需要考虑Start的时候传参,直接使用()=>{}的形式,解决一切问题。

(二) 前台进程和后台进程(IsBackground属性)

  ①:前台进程,Thread默认为前台线程,程序关闭后,线程仍然继续,直到计算完为止

  ②:后台进程,将IsBackground属性设置为true,即为后台进程,主线程关闭,所有子线程无论运行完否,都马上关闭

(三) 线程等待(Join方法)

  利用Join方法实现主线程等待子线程,当多个子线程进行等待的时候,只能通过for循环来实现

 下面贴一下这三块设计到的代码:

 

 View Code

(四). 扩展:Thread实现线程回调

 

三. 数据槽-线程可见性

  背景:为了解决多线程竞用共享资源的问题,引入数据槽的概念,即将数据存放到线程的环境块中,使该数据只能单一线程访问.(属于线程空间上的开销)

  下面的三种方式是解决多线程竞用共享资源的通用方式:

  ①:AllocateNamedDataSlot命名槽位和AllocateDataSlot未命名槽位 解决线程竞用资源共享问题。

  (PS:在主线程上设置槽位,使该数据只能被主线程读取,其它线程无法访问)

复制代码

   private void button10_Click(object sender, EventArgs e){#region 01-AllocateNamedDataSlot命名槽位{var d = Thread.AllocateNamedDataSlot("userName");//在主线程上设置槽位,使该数据只能被主线程读取,其它线程无法访问Thread.SetData(d, "ypf");//声明一个子线程var t1 = new Thread(() =>{Console.WriteLine("子线程中读取数据:{0}", Thread.GetData(d));});t1.Start();//主线程中读取数据Console.WriteLine("主线程中读取数据:{0}", Thread.GetData(d));}#endregion#region 02-AllocateDataSlot未命名槽位{var d = Thread.AllocateDataSlot();//在主线程上设置槽位,使该数据只能被主线程读取,其它线程无法访问Thread.SetData(d, "ypf");//声明一个子线程var t1 = new Thread(() =>{Console.WriteLine("子线程中读取数据:{0}", Thread.GetData(d));});t1.Start();//主线程中读取数据Console.WriteLine("主线程中读取数据:{0}", Thread.GetData(d));}#endregion}

复制代码

  ②:利用特性[ThreadStatic] 解决线程竞用资源共享问题

   (PS:在主线程中给ThreadStatic特性标注的变量赋值,则只有主线程能访问该变量)

  ③:利用ThreadLocal线程的本地存储, 解决线程竞用资源共享问题(线程可见性)

  (PS: 在主线程中声明ThreadLocal变量,并对其赋值,则只有主线程能访问该变量)

 

 

四. 内存栅栏-线程共享资源

背景:当多个线程共享一个变量的时候,在Release模式的优化下,子线程会将共享变量加载的cup Cache中,导致主线程不能使用该变量而无法运行。

解决方案:

  ①:不要让多线程去操作同一个共享变量,从根本上解决这个问题。

  ②:利用MemoryBarrier方法进行处理,在此方法之前的内存写入都要及时从cpu cache中更新到 memory;在此方法之后的内存读取都要从memory中读取,而不是cpu cache。

  ③:利用VolatileRead/Write方法进行处理。

复制代码

 1  private void button11_Click(object sender, EventArgs e)2         {3             #region 01-默认情况(Release模式主线程不能正常运行)4             //{5             //    var isStop = false;6             //    var t = new Thread(() =>7             //    {8             //        var isSuccess = false;9             //        while (!isStop)
10             //        {
11             //            isSuccess = !isSuccess;
12             //        }
13             //        Console.WriteLine("子线程执行成功");
14             //    });
15             //    t.Start();
16 
17             //    Thread.Sleep(1000);
18             //    isStop = true;
19 
20             //    t.Join();
21             //    Console.WriteLine("主线程执行结束");
22             //}
23             #endregion
24 
25             #region 02-MemoryBarrier解决共享变量(Release模式下可以正常运行)
26             //{
27             //    var isStop = false;
28             //    var t = new Thread(() =>
29             //    {
30             //        var isSuccess = false;
31             //        while (!isStop)
32             //        {
33             //            Thread.MemoryBarrier();
34 
35             //            isSuccess = !isSuccess;
36             //        }
37             //        Console.WriteLine("子线程执行成功");
38             //    });
39             //    t.Start();
40 
41             //    Thread.Sleep(1000);
42             //    isStop = true;
43 
44             //    t.Join();
45             //    Console.WriteLine("主线程执行结束");
46             //}
47             #endregion
48 
49             #region 03-VolatileRead解决共享变量(Release模式下可以正常运行)
50             {
51                 var isStop = 0;
52                 var t = new Thread(() =>
53                 {
54                     var isSuccess = false;
55                     while (isStop == 0)
56                     {
57                         Thread.VolatileRead(ref isStop);
58 
59                         isSuccess = !isSuccess;
60                     }
61                     Console.WriteLine("子线程执行成功");
62                 });
63                 t.Start();
64 
65                 Thread.Sleep(1000);
66                 isStop = 1;
67 
68                 t.Join();
69                 Console.WriteLine("主线程执行结束");
70             }
71             #endregion
72 
73 
74         }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/438275.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HashMap和ConcurrentHashMap

HashMap: 线程不安全&#xff0c;不支持并发操作&#xff0c;键-值&#xff08;key-value&#xff09;都允许为空、、不保证有序 在 JDK1.7 中&#xff0c;HashMap 采用头插法插入元素&#xff0c;因此并发情况下会导致环形链表&#xff0c;产生死循环。 虽然 JDK1.8 采用了…

第三节:ThreadPool的线程开启、线程等待、线程池的设置、定时功能

一. ThreadPool简介 ThreadPool简介&#xff1a;ThreadPool是一个线程池&#xff0c;当你需要开启n个线程时候&#xff0c;只需把这个指令抛给线程池&#xff0c;它将自动分配线程进行处理&#xff0c;它诞生于.Net 2.0时代。 ThreadPool与Thread的区别&#xff1a; ①&#xf…

第十节:进一步扩展两种安全校验方式

一. 简介 简介&#xff1a; 上一节中&#xff0c;主要介绍了JWT校验&#xff0c;它是无状态的&#xff0c;是基于Token校验的一种升级&#xff0c;它适用的范围很广泛&#xff0c;APP、JS前端、后台等等客户端调用服务器端的校验。本节补充几种后台接口的校验方式&#xff0c;它…

第十一节:WebApi的版本管理的几种方式

一. 背景和方案 1. 多版本管理的概念 Android 、IOS等 App 存在着多版本客户端共存的问题&#xff1a;App 最新版已经升级到了5.0 了&#xff0c;但是有的用户手机上还运行着 4.8、3.9 甚至2.2 版本的 App&#xff0c;由于早期没有内置升级机制、用户不会升级、用户拒绝升级等…

类加载器分类

类加载器干就是将对应类的.class文件中的二进制流加载到内存空间,只管加载&#xff0c;只要符合文件结构就加载&#xff0c;至于能否运行&#xff0c;它不负责 类加载器的分类 1.启动类加载器 2.扩展类加载器 3.应用程序类加载器 委托机制:双亲委派模型 当一个类加载的过…

第十二节:WebApi自动生成在线Api文档的两种方式

一. WebApi自带生成api文档 1. 说明 通过观察&#xff0c;发现WebApi项目中Area文件夹下有一个HelpPage文件夹&#xff0c;如下图&#xff0c;该文件夹就是WebApi自带的生成Api的方式&#xff0c;如果该文件夹没了&#xff0c;可以通过Nuget安装&#xff1a;Microsoft.AspNet.…

JVM 组成部分

JVM可以分为3大部分&#xff1a;类加载器&#xff0c;运行时数据区和执行引擎。 类加载器负责加载.class 文件 运行时数据区负责存放.class 文件&#xff0c;分配内存。运行时数据区又分为5个部分: 方法区&#xff1a;负责存放.class 文件&#xff0c;方法区里有一块区域是运…

第十三节:Asp.Net Core WebApi基础总结和请求方式-第十八节

一. 基础总结 1.Restful服务改造 Core下的WebApi默认也是Restful格式服务&#xff0c;即通过请求方式(Get,post,put,delete)来区分请求哪个方法&#xff0c;请求的URL中不需要写方法名。 但是我们不喜欢这种方式&#xff0c;所以我们将默认的路由规则 [Route("api/[contr…

第十四节:Asp.Net Core WebApi生成在线文档-第十九节

一. 基本概念 1.背景 使用 Web API 时&#xff0c;了解其各种方法对开发人员来说可能是一项挑战。 Swagger 也称为OpenAPI&#xff0c;解决了为 Web API 生成有用文档和帮助页的问题。 它具有诸如交互式文档、客户端 SDK生成和 API 可发现性等优点&#xff0c;目前有两种实现方…

第十五节:Asp.Net Core MVC和WebApi路由规则的总结和对比-第二十节

一. Core Mvc 1.传统路由 Core MVC中&#xff0c;默认会在 Startup类→Configure方法→UseMvc方法中&#xff0c;会有默认路由&#xff1a;routes.MapRoute("default", "{controllerHome}/{actionIndex}/{id?}"); 等价于 app.UseMvcWithDefaultRoute(); …

第四节:Task的启动的四种方式以及Task、TaskFactory的线程等待和线程延续的解决方案

一. 背景 揭秘&#xff1a; 在前面的章节介绍过&#xff0c;Task出现之前&#xff0c;微软的多线程处理方式有&#xff1a;Thread→ThreadPool→委托的异步调用&#xff0c;虽然也可以基本业务需要的多线程场景&#xff0c;但它们在多个线程的等待处理方面、资源占用方面、线程…

第五节:Task构造函数之TaskCreationOptions枚举处理父子线程之间的关系。

一. 整体说明 揭秘&#xff1a; 通过F12查看Task类的源码(详见下面的截图)&#xff0c;发现Task类的构造函数有有一个参数为&#xff1a;TaskCreationOptions类型&#xff0c;本章节可以算作是一个扩展章节&#xff0c;主要就来研究TaskCreationOptions类的作用。 该类主要用来…

第六节:深入研究Task实例方法ContinueWith的参数TaskContinuationOptions

一. 整体说明 揭秘&#xff1a; 该章节的性质和上一个章节类似&#xff0c;也是一个扩展的章节&#xff0c;主要来研究Task类下的实例方法ContinueWith中的参数TaskContinuationOptions。 通过F12查看TaskContinuationOptions的源码&#xff0c;知道主要有这么几个参数&#xf…

第七节:利用CancellationTokenSource实现任务取消和利用CancellationToken类检测取消异常。

一. 传统的线程取消 所谓的线程取消&#xff0c;就是线程正在执行的过程中取消线程任务。 传统的线程取消&#xff0c;是通过一个变量来控制&#xff0c;但是这种方式&#xff0c;在release模式下&#xff0c;被优化从cpu高速缓存中读取&#xff0c;而不是从内存中读取&#xf…

第八节:Task的各类TaskTResult返回值以及通用线程的异常处理方案。

一. Task的各种返回值-Task<TResult> PS&#xff1a; 在前面章节&#xff0c;我们介绍了Task类开启线程、线程等待、线程延续的方式&#xff0c;但我们并没有关注这些方式的返回值&#xff0c;其实他们都是有返回值的Task<TResult>&#xff0c;然后可以通过Task的…

第九节:深究并行编程Parallel类中的三大方法 (For、ForEach、Invoke)和几大编程模型(SPM、APM、EAP、TAP)

一. 并行编程 1. 区分串行编程和串行编程 ①. 串行编程&#xff1a;所谓的串行编程就是单线程的作用下&#xff0c;按顺序执行。(典型代表for循环 下面例子从1-100按顺序执行) ②. 并行编程&#xff1a;充分利用多核cpu的优势&#xff0c;同时开启多个线程并行执行。(典型代表…

第十节:利用async和await简化异步编程模式的几种写法

一. async和await简介 PS&#xff1a;简介 1. async和await这两个关键字是为了简化异步编程模型而诞生的&#xff0c;使的异步编程更简洁&#xff0c;它本身并不创建新线程&#xff0c;但在该方法内部开启多线程&#xff0c;则另算。 2. 这两个关键字适用于处理一些文件IO操作。…

第十一节:深究用户模式锁的使用场景(异变结构、互锁、旋转锁)

一. 锁机制的背景介绍 本章节&#xff0c;将结合多线程来介绍锁机制&#xff0c; 那么问题来了&#xff0c;什么是锁呢&#xff1f; 为什么需要锁&#xff1f; 为什么要结合多线程来介绍锁呢&#xff1f;锁的使用场景又是什么呢&#xff1f; DotNet中又有哪些锁呢&#xff1f; …

第十三节:实际开发中使用最多的监视锁Monitor、lock语法糖的扩展、混合锁的使用(ManualResetEvent、SemaphoreSlim、ReaderWriterLockSlim)

一. 监视锁(Monitor和lock) 1. Monitor类&#xff0c;限定线程个数的一把锁&#xff08;Synchronized lock是他的语法糖&#xff09;&#xff0c;两个核心方法&#xff1a; Enter&#xff1a;锁住某个资源。 Exit&#xff1a;退出某一个资源。 测试案例&#xff1a;开启5个线…

第十四节: 介绍四大并发集合类并结合单例模式下的队列来说明线程安全和非安全的场景及补充性能调优问题。

一. 四大并发集合类 背景&#xff1a;我们目前使用的所有集合都是线程不安全的 。 A. ConcurrentBag&#xff1a;就是利用线程槽来分摊Bag中的所有数据&#xff0c;链表的头插法,0代表移除最后一个插入的值. (等价于同步中的List) B. ConcurrentStack&#xff1a;线程安全的St…