RocketMQ 消息消费 轮询机制 PullRequestHoldService

1. 概述

先来看看 RocketMQ 消费过程中的轮询机制是啥。首先需要补充一点消费相关的前置知识。

1.1 消息消费方式

RocketMQ 支持多种消费方式,包括 Push 模式和 Pull 模式

  • Pull 模式:用户自己进行消息的拉取和消费进度的更新
  • Push 模式:Broker 将新的消息自动发送给用户进行消费

1.2 Push 消费模式

我们一般使用 RocketMQ 时用的是 Push 模式,因为比较方便,不需要手动拉取消息和更新消费进度。

那么你有没有想过 Push 模式是如何做到能够立即消费新的消息?

1.2.1 Push 模式原理

实际上,在 Push 消费时,消费者是在不断轮询 Broker,询问是否有新消息可供消费。一旦有新消息到达,马上拉取该消息。也就是说 Push 模式内部也用了 Pull 消息的模式,这样就可以立即消费到最新的消息。

1.3 如何进行轮询?

那么 Push 模式或 Pull 模式如何进行消息的查询?

能够想到的比较笨的方法是,每隔一定的时间(如1ms)就向 Broker 发送一个查询请求,如果没有新消息则立刻返回。可想而知这种方法非常浪费网络资源。

RocketMQ 为了提高网络性能,在拉取消息时如果没有新消息,不会马上返回,而是会将该查询请求挂起一段时间,然后再重试查询。如果一直没有新消息,直到轮询时间超过设定的阈值才会返回。

根据轮询设定的超时阈值大小的不同,RocketMQ 有两种轮询方式,分别为长轮询(默认)和短轮询。

1.4 长轮询和短轮询

RocketMQ 的 Broker 端参数 longPollingEnable 可以配置轮询方式,默认为 true

  • 短轮询:longPollingEnable=false,轮询时间为 shortPollingTimeMills ,默认为 1s
  • 长轮询:longPollingEnable=true,轮询时间为 5s。拉取请求挂起时间:受 DefaultMQPullConsumerbrokerSuspendMaxTimeMillis 控制,默认push模式固定15s,pull模式固定20s。

2. 概要流程

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-b6pQzSWr-1646145661686)(https://raw.githubusercontent.com/HScarb/drawio-diagrams/main/rocketmq/consume/long_polling_activity.drawio.svg)]

根据上面的活动图来看一下 RocketMQ 消费时的轮询机制流程

  1. Consumer 发送拉取消息请求
  2. Broker 收到请求后交给请求处理模块处理
  3. 尝试从存储的消息中拉取消息
  4. 如果能够拉取消息,那么将拉取到的消息直接返回
  5. 如果没有拉取到消息,那么根据 Broker 是否支持挂起和是否开启长轮询来判断是否要进行轮询以及进行哪种轮询。
    1. 如果支持挂起,那么会将该拉取请求挂起
    2. 长轮询等待 5s
    3. 短轮询等待 1s
  6. 检查消费队列中是否有新消息到达,如果没有则继续等待,以此循环。如果有新消息,处理挂起的拉取消息请求并返回消费者。
  7. 如果没有新消息到达,轮询后会检查每个挂起的拉取请求的挂起时间是否超过挂起时间阈值,如果超过那么也会直接返回消费者,否则继续循环进行轮询操作。


那么按照上述流程,开启长轮询的情况下,如果一次轮询没有找到消息,要等待 5s 才能进行下一次查询。如果这 5s 当中有新的消息存入,如何保证能够立刻消费到?

解决方案不难想到,就是新的消息写入后,主动进行通知,让挂起的拉取请求立刻进行拉取操作。

RocketMQ 就是这么做的,在消息存入 CommitLog 后的 doReput 方法中,会判断是否是长轮询,如果是则会发送一个通知,让挂起的拉取请求立刻进行处理。

3. 详细流程

3.1 涉及到的类

3.1.1 PullMessageProcessor

该类是 Broker 处理 Consumer 拉取清求的入口类。当 Broker 收到 Consumer 发送的拉取请求时,调用该类的 processRequest 方法

3.1.2 PullRequestHoldService

长轮询请求管理线程,挂起的拉取请求会在这里进行保存。每等待一段时间(长轮询/短轮询等待时间)会检查挂起的请求中是否有可以进行拉取的数据。

3.1.3 DefaultMessageStore#ReputMessageService

该线程负责将存储到 CommitLog 的消息重新转发,用以生成 ConsumeQueue 和 IndexFile 索引。在生成索引之后,会向长轮询线程发送提醒,立刻唤醒相应队列的拉取请求,执行消息拉取。

3.2 时序图

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-brvsznhE-1646145661687)(https://raw.githubusercontent.com/HScarb/drawio-diagrams/main/rocketmq/consume/long_polling_sequence.drawio.svg)]

着重体现了长轮询逻辑,其他逻辑有所省略

  1. 消费者调用 pullKernelImpl() 发送拉取请求,调用时用 brokerSuspendMaxTimeMillis 指定了 Broker 挂起的最长时间,默认为 20s
  2. Broker 中 PullMessageProcess 处理拉取请求,从 ConsumeQueue 中查询消息
  3. 如果没有查询到消息,判断是否启用长轮询,调用 PullRequestHoldService#suspendPullRequest() 方法将该请求挂起
  4. PullRequestHoldService 线程 run() 方法循环等待轮询时间,然后周期性调用 checkHoldRequest() 方法检查挂起的请求是否有消息可以拉取
  5. 如果检查到有新消息可以拉取,调用 notifyMessageArriving() 方法
  6. ReputMessageService 的 doReput() 如果被调用,说明也有新消息到达,需要唤醒挂起的拉取请求。这里也会发送一个 notify,进而调用 notifyMessageArriving() 方法
  7. notifyMessageArriving() 方法中也会查询 ConsumeQueue 的最大 offset,如果确实有新消息,那么将唤醒对应的拉取请求,具体的方法是调用 executeRequestWhenWakeup() 方法
  8. executeRequestWhenWakeup() 方法唤醒拉取请求,调用 processRequest() 方法处理该请求

3.3 每个类的具体逻辑

3.3.1 PullMessageProcessor

Broker 处理 Consumer 拉取清求的入口类

  • RemotingCommand processRequest(ChannelHandlerContext ctx, RemotingCommand request):处理 Consumer 拉取请求的入口方法,收到 Consumer 拉取请求时调用。该方法主要完成如下操作

    1. 校验
    2. 消息过滤
    3. 从存储中查询消息
    4. 返回响应给 Consumer

    如果从存储中没有查询到消息,会将响应码设置为 ResponseCode.PULL_NOT_FOUND,并且启动长轮询

  • void executeRequestWhenWakeup(Channel channel, final RemotingCommand request):将 Hold 的拉取请求唤醒,再次拉取消息

    • 该方法在长轮询收到新消息时调用,立即唤醒挂起的拉取请求,然后对这些请求调用 processRequest 方法
    • 何时需要提醒长轮询新消息已经到达?上面说到,在长轮询等待时如果有新消息到达,CommitLogdoReput 方法中会进行提醒,最终会调用 executeRequestWhenWakeup 方法

3.3.2 PullRequestHoldService

该服务线程会从 pullRequestTable 本地缓存变量中取PullRequest请求,检查轮询条件“待拉取消息的偏移量是否小于消费队列最大偏移量”是否成立,如果条件成立则说明有新消息达到Broker端,则通过PullMessageProcessor的executeRequestWhenWakeup()方法重新尝试发起Pull消息的RPC请求

  • pullRequestTable

    private ConcurrentMap<String/* topic@queueId */, ManyPullRequest/* 同一队列积累的拉取请求 */> pullRequestTable = new ConcurrentHashMap<>(1024)
    

    上面是挂起的消息拉取请求容器,它是一个 ConcurrentHashMap,key 是拉取请求的队列,value 是该队列挂起的所有拉取请求。其中 ManyPullRequest 底层是一个 ArrayList,它的 add 方法加了锁。

  • suspendPullRequest(String topic, int queueId, PullRequest pullRequest):将 Consumer 拉取请求暂时挂起,会将请求加入到 pullRequestTable

  • checkHoldRequest():检查所有挂起的拉取请求,如果有数据满足要求,就唤醒该请求,对其执行 PullMessageProcessor#processRequest 方法

  • run():线程主循环,每等待一段时间就调用 checkHoldRequest() 方法检查是否有请求需要唤醒。等待的时间根据长轮询/短轮询的配置决定,长轮询等待 5s,短轮询默认等待 1s

  • notifyMessageArriving():被 checkHoldRequest()ReputMessageService#doReput() 调用,表示新消息到达,唤醒对应队列挂起的拉取请求

3.3.3 DefaultMessageStore#ReputMessageService

该服务线程 doReput() 方法会在 Broker 端不断地从数据存储对象 CommitLog 中解析数据并分发请求,随后构建出 ConsumeQueue(逻辑消费队列)和 IndexFile(消息索引文件)两种类型的数据。

同时从本地缓存变量 PullRequestHoldService#pullRequestTable 中,取出挂起的拉起请求并执行。

4. 源码解析

4.1 PullMessageProcessor

4.1.1 processRequest

如果从存储中没有查询到消息,会将响应码设置为 ResponseCode.PULL_NOT_FOUND,并且启动长轮询

以下三种情况会将响应码设置为ResponseCode.PULL_NOT_FOUND

  1. NO_MESSAGE_IN_QUEUE:消费队列中没有任何消息
  2. OFFSET_FOUND_NULL:offset未找到任何数据
  3. OFFSET_OVERFLOW_ONE:待拉取偏移量等于队列最大偏移量

/*** 处理客户端请求入口** @param channel 网络通道,通过该通道向消息拉取客户端发送响应结果* @param request 消息拉取请求* @param brokerAllowSuspend Broker端是否允许挂起,默认true。true:如果未找到消息则挂起。false:未找到消息直接返回消息未找到* @return 响应* @throws RemotingCommandException 当解析请求发生异常时*/
private RemotingCommand processRequest(final Channel channel, RemotingCommand request, boolean brokerAllowSuspend)throws RemotingCommandException {// ...switch (response.getCode()) {// ...// 如果从消费队列中未找到新的可以拉取的消息,判断并挂起该拉取请求case ResponseCode.PULL_NOT_FOUND:// 长轮询if (brokerAllowSuspend && hasSuspendFlag) {long pollingTimeMills = suspendTimeoutMillisLong;if (!this.brokerController.getBrokerConfig().isLongPollingEnable()) {pollingTimeMills = this.brokerController.getBrokerConfig().getShortPollingTimeMills();}String topic = requestHeader.getTopic();long offset = requestHeader.getQueueOffset();int queueId = requestHeader.getQueueId();PullRequest pullRequest = new PullRequest(request, channel, pollingTimeMills,this.brokerController.getMessageStore().now(), offset, subscriptionData, messageFilter);this.brokerController.getPullRequestHoldService().suspendPullRequest(topic, queueId, pullRequest);response = null;break;}// ...
}

4.1.2 executeRequestWhenWakeup

在PullMessageProcessor的executeRequestWhenWakeup()方法中,通过业务线程池pullMessageExecutor,异步提交重新Pull消息的请求任务,即为重新调了一次PullMessageProcessor业务处理器的processRequest()方法,来实现Pull消息请求的二次处理)。

/*** 将Hold的拉取请求唤醒,再次拉取消息* 该方法调用线程池,因此,不会阻塞** @param channel 通道* @param request Consumer拉取请求* @throws RemotingCommandException 当远程调用发生异常*/
public void executeRequestWhenWakeup(final Channel channel,final RemotingCommand request) throws RemotingCommandException {Runnable run = new Runnable() {@Overridepublic void run() {try {// 处理Consumer拉取请求,获取返回体final RemotingCommand response = PullMessageProcessor.this.processRequest(channel, request, false);if (response != null) {response.setOpaque(request.getOpaque());response.markResponseType();try {// 将返回体写入channel,返回给Consumerchannel.writeAndFlush(response).addListener(new ChannelFutureListener() {@Overridepublic void operationComplete(ChannelFuture future) throws Exception {if (!future.isSuccess()) {log.error("processRequestWrapper response to {} failed",future.channel().remoteAddress(), future.cause());log.error(request.toString());log.error(response.toString());}}});} catch (Throwable e) {log.error("processRequestWrapper process request over, but response failed", e);log.error(request.toString());log.error(response.toString());}}} catch (RemotingCommandException e1) {log.error("excuteRequestWhenWakeup run", e1);}}};// 异步执行请求处理和返回this.brokerController.getPullMessageExecutor().submit(new RequestTask(run, channel, request));
}

4.2 PullRequestHoldService

4.2.1 suspendPullRequest

/*** 挂起(保存)客户端请求,当有数据的时候触发请求** @param topic 主题* @param queueId 队列编号* @param pullRequest 拉取消息请求*/
public void suspendPullRequest(final String topic, final int queueId, final PullRequest pullRequest) {// 根据topic和queueId构造map的keyString key = this.buildKey(topic, queueId);// map的key如果为空,创建一个空的request队列,填充key和valueManyPullRequest mpr = this.pullRequestTable.get(key);if (null == mpr) {mpr = new ManyPullRequest();ManyPullRequest prev = this.pullRequestTable.putIfAbsent(key, mpr);if (prev != null) {mpr = prev;}}// 保存该次Consumer拉取请求mpr.addPullRequest(pullRequest);
}

4.2.2 checkHoldRequest

/*** 检查所有已经挂起的长轮询请求* 如果有数据满足要求,就触发请求再次执行*/
private void checkHoldRequest() {// 遍历拉取请求容器中的每个队列for (String key : this.pullRequestTable.keySet()) {String[] kArray = key.split(TOPIC_QUEUEID_SEPARATOR);if (2 == kArray.length) {String topic = kArray[0];int queueId = Integer.parseInt(kArray[1]);// 从store中获取队列的最大偏移量final long offset = this.brokerController.getMessageStore().getMaxOffsetInQueue(topic, queueId);try {// 根据store中获取的最大偏移量,判断是否有新消息到达,如果有则执行拉取请求操作this.notifyMessageArriving(topic, queueId, offset);} catch (Throwable e) {log.error("check hold request failed. topic={}, queueId={}", topic, queueId, e);}}}
}

4.2.3 run

@Override
public void run() {log.info("{} service started", this.getServiceName());while (!this.isStopped()) {try {// 等待一定时间if (this.brokerController.getBrokerConfig().isLongPollingEnable()) {// 开启长轮询,每5s判断一次消息是否到达this.waitForRunning(5 * 1000);} else {// 未开启长轮询,每1s判断一次消息是否到达this.waitForRunning(this.brokerController.getBrokerConfig().getShortPollingTimeMills());}long beginLockTimestamp = this.systemClock.now();// 检查是否有消息到达,可以唤醒挂起的请求this.checkHoldRequest();long costTime = this.systemClock.now() - beginLockTimestamp;if (costTime > 5 * 1000) {log.info("[NOTIFYME] check hold request cost {} ms.", costTime);}} catch (Throwable e) {log.warn(this.getServiceName() + " service has exception. ", e);}}log.info("{} service end", this.getServiceName());
}

4.2.4 notifyMessageArriving

这个方法在两个地方被调用,如下图所示

Untitled

这个方法是重新唤醒拉取请求的核心方法。调用这个方法,提醒 PullRequestHoldService 线程有新消息到达

我们来看看这个方法具体做了什么

  1. 根据 topic 和 queueId 获取挂起的拉取请求列表
  2. 从 store 中获取该队列消息的最大offset
  3. 遍历该队列的所有拉取请求,符合以下两种条件之一的拉取请求会被处理并返回
    1. 消费队列最大offset比消费者拉取请求的offset大,说明有新的消息可以被拉取,处理该拉取请求
    2. 拉取请求挂起时间超过阈值,直接返回消息未找到
  4. 如果不满足以上两个条件,那么该拉取请求会重新放回 pullRequestTable,等待下次检查

/*** 当有新消息到达的时候,唤醒长轮询的消费端请求** @param topic     消息Topic* @param queueId   消息队列ID* @param maxOffset 消费队列的最大Offset*/
public void notifyMessageArriving(final String topic, final int queueId, final long maxOffset, final Long tagsCode,long msgStoreTime, byte[] filterBitMap, Map<String, String> properties) {// 根据topic和queueId从容器中取出挂起的拉取请求列表String key = this.buildKey(topic, queueId);ManyPullRequest mpr = this.pullRequestTable.get(key);if (mpr != null) {// 获取挂起的拉取请求列表List<PullRequest> requestList = mpr.cloneListAndClear();if (requestList != null) {// 预先定义需要继续挂起的拉取请求列表List<PullRequest> replayList = new ArrayList<PullRequest>();for (PullRequest request : requestList) {long newestOffset = maxOffset;// 从store中获取该队列消息的最大offsetif (newestOffset <= request.getPullFromThisOffset()) {newestOffset = this.brokerController.getMessageStore().getMaxOffsetInQueue(topic, queueId);}// 消费队列最大offset比消费者拉取请求的offset大,说明有新的消息可以被拉取if (newestOffset > request.getPullFromThisOffset()) {// 消息过滤匹配boolean match = request.getMessageFilter().isMatchedByConsumeQueue(tagsCode,new ConsumeQueueExt.CqExtUnit(tagsCode, msgStoreTime, filterBitMap));// match by bit map, need eval again when properties is not null.if (match && properties != null) {match = request.getMessageFilter().isMatchedByCommitLog(null, properties);}if (match) {try {// 会调用PullMessageProcessor#processRequest方法拉取消息,然后将结果返回给消费者this.brokerController.getPullMessageProcessor().executeRequestWhenWakeup(request.getClientChannel(),request.getRequestCommand());} catch (Throwable e) {log.error("execute request when wakeup failed.", e);}continue;}}// 查看是否超时,如果Consumer请求达到了超时时间,也触发响应,直接返回消息未找到if (System.currentTimeMillis() >= (request.getSuspendTimestamp() + request.getTimeoutMillis())) {try {this.brokerController.getPullMessageProcessor().executeRequestWhenWakeup(request.getClientChannel(),request.getRequestCommand());} catch (Throwable e) {log.error("execute request when wakeup failed.", e);}continue;}// 当前不满足要求,重新放回Hold列表中replayList.add(request);}if (!replayList.isEmpty()) {mpr.addPullRequest(replayList);}}}
}

4.3 DefaultMessageStore#ReputMessageService

4.3.1 doReput

private void doReput() {// ...DefaultMessageStore.this.doDispatch(dispatchRequest);// 通知消息消费长轮询线程,有新的消息落盘,立即唤醒挂起的消息拉取请求if (BrokerRole.SLAVE != DefaultMessageStore.this.getMessageStoreConfig().getBrokerRole()&& DefaultMessageStore.this.brokerConfig.isLongPollingEnable()&& DefaultMessageStore.this.messageArrivingListener != null) {DefaultMessageStore.this.messageArrivingListener.arriving(dispatchRequest.getTopic(),dispatchRequest.getQueueId(), dispatchRequest.getConsumeQueueOffset() + 1,dispatchRequest.getTagsCode(), dispatchRequest.getStoreTimestamp(),dispatchRequest.getBitMap(), dispatchRequest.getPropertiesMap());
}

这里调用了 NotifyMessageArrivingListener#arriving() 方法,进而调用 PullRequestHoldService.notifyMessageArriving()。

为什么不直接调用 pullRequestHoldService.notifyMessageArriving() ?因为 doReput 所处的类所在的包是 store,存储包,而 PullRequestHoldService 在 broker 包中

所以需要一个桥梁,就是 NotifyMessageArrivingListener。它在 Broker 初始化 DefaultMessageStore 时被写入 DefaultMessageStore

4.3.2 NotifyMessageArrivingListener#arriving

public class NotifyMessageArrivingListener implements MessageArrivingListener {@Overridepublic void arriving(String topic, int queueId, long logicOffset, long tagsCode,long msgStoreTime, byte[] filterBitMap, Map<String, String> properties) {// 提醒长轮询请求管理容器,新的消息到达,立刻拉取最新消息this.pullRequestHoldService.notifyMessageArriving(topic, queueId, logicOffset, tagsCode,msgStoreTime, filterBitMap, properties);}
}

参考资料

  • 源码分析RocketMQ消息PULL-长轮询模式
  • 消息中间件—RocketMQ 消息消费(二)(push 模式实现)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43357.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探索心律失常:病因、诊断与治疗以及与肠道菌群的关联

谷禾健康 你是否有时会感到心悸、心慌、胸闷、气短、头晕、乏力&#xff1f;你是否有时感觉自己的心跳过快或过慢&#xff1f; 如果有上述情况&#xff0c;就要引起重视了&#xff0c;你可能存在心律失常。心律失常是最常见的心脏疾病之一&#xff0c;涉及到心脏的电活动节奏异…

麻辣烫数据可视化,麻辣烫市场将持续蓬勃发展

麻辣烫&#xff0c;这道源自中国的美食&#xff0c;早已成为人们生活中不可或缺的一部分。它独特的香辣口味&#xff0c;让人忍不住每每流连忘返。与人们的关系&#xff0c;简直如同挚友一般。每当寒冷的冬日或疲惫的时刻&#xff0c;麻辣烫总是悄然走进人们的心房&#xff0c;…

i.MX6ULL开发板无法进入NFS挂载文件系统的解决办法

问题 使用NFS网络挂载文件系统后卡住无法进入系统。 解决办法 此处不详细讲述NFS安装流程 查看板卡挂载在/home/etc/rc.init下的自启动程序 进入到../../home/etc目录下&#xff0c;查看rc.init文件&#xff0c;首先从第一行排查&#xff0c;查看/home/etc/netcfg文件代码内容&…

Flask-SQLAlchemy

认识Flask-SQLAlchemy Flask-SQLAlchemy 是一个为 Flask 应用增加 SQLAlchemy 支持的扩展。它致力于简化在 Flask 中 SQLAlchemy 的使用。SQLAlchemy 是目前python中最强大的 ORM框架, 功能全面, 使用简单。 ORM优缺点 优点 有语法提示, 省去自己拼写SQL&#xff0c;保证SQL…

spring的核心技术---bean的生命周期加案例分析详细易懂

目录 一.spring管理JavaBean的初始化过程&#xff08;生命周期&#xff09; Spring Bean的生命周期&#xff1a; 二.spring的JavaBean管理中单例模式及原型&#xff08;多例&#xff09;模式 2.1 . 默认为单例&#xff0c;但是可以配置多例 2.2.举例论证 2.2.1 默认单例 2.2…

前端常用算法(一):防抖+节流

目录 第一章 防抖 1.1 防抖&#xff08;debounce&#xff09;简介 1.2 应用场景 1.3 实现思路 1.4 手撕防抖代码 第二章 节流 2.1 节流&#xff08;throttle&#xff09;简介 2.2 应用场景 2.3 实现思路 2.4 手撕节流代码&#xff08;方法&#xff1a;时间戳和计时器…

MR300C工业无线WiFi图传模块 内窥镜机器人图像传输有线无线的两种方式

MR300C无线WiFi图传模使用方法工业机器人图像高清传输 ⚫ MR300C图传模块基于MIPS处理器实现&#xff0c;电脑/手机连接模块的WIFI热点或网口即可查看视频流 ⚫ 模块的USB 2.0 Host接口&#xff0c;可接入USB uvc摄像头/内窥镜默认输出的视频格式必须是MJPG ⚫ 模块支持接入摄…

计算机竞赛 图像识别-人脸识别与疲劳检测 - python opencv

文章目录 0 前言1 课题背景2 Dlib人脸识别2.1 简介2.2 Dlib优点2.3 相关代码2.4 人脸数据库2.5 人脸录入加识别效果 3 疲劳检测算法3.1 眼睛检测算法3.3 点头检测算法 4 PyQt54.1 简介4.2相关界面代码 5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是…

MongoDB升级经历(4.0.23至5.0.19)

MongoDB从4.0.23至5.0.19升级经历 引子&#xff1a;为了解决MongoDB的两个漏洞决定把MongoDB升级至最新版本&#xff0c;期间也踩了不少坑&#xff0c;在这里分享出来供大家学习与避坑~ 1、MongoDB的两个漏洞 漏洞1&#xff1a;MongoDB Server 安全漏洞(CVE-2021-20330) 漏洞2…

SpringBoot + Vue 微人事(十二)

职位批量删除实现 编写后端接口 PositionController DeleteMapping("/")public RespBean deletePositionByIds(Integer[] ids){if(positionsService.deletePositionsByIds(ids)ids.length){return RespBean.ok("删除成功");}return RespBean.err("删…

工业视觉相机镜头选型方法

一、相机选型 1、首先&#xff0c;根据检测需求确定选用黑白/彩色、面阵/线阵相机&#xff0c;接口类型一般选择GigE 2、确定检测精度要求&#xff08;最小特征尺寸mm&#xff09;、视野范围&#xff0c;一个测量精度对应几个像素数&#xff08;一般取3-5&#xff09; 3、计…

esp32c3 micropython oled实时天气信息

目录 简介 效果展示 代码 main.py ssd1306.py font.py 实现思路 简介 合宙esp32c3 micropython框架&#xff0c;只支持128*64 I2C oled ssd1306驱动我优化过的&#xff0c;与其他的不一样&#xff0c;为避免出错&#xff0c;使用我的驱动 把下面两个py文件放入单片机内…

SqlServer的with(nolock)关键字的用法介绍

举个例子 下面就来演示这个情况。 为了演示两个事务死锁的情况&#xff0c;我们下面的测试都需要在SQL Server Management Studio中打开两个查询窗口。保证事务不被干扰。 --1、 没有提交的事务&#xff0c;NOLOCK 和 READPAST处理的策略&#xff1a; --查询窗口一请执行如下…

【马蹄集】第二十三周——进位制专题

进位制专题 目录 MT2186 二进制&#xff1f;不同&#xff01;MT2187 excel的烦恼MT2188 单条件和MT2189 三进制计算机1MT2190 三进制计算机2 MT2186 二进制&#xff1f;不同&#xff01; 难度&#xff1a;黄金    时间限制&#xff1a;1秒    占用内存&#xff1a;128M 题目…

SQL力扣练习(十一)

目录 1.树节点(608) 示例 1 解法一(case when) 解法二(not in) 2.判断三角形(610) 示例 1 解法一(case when) 解法二(if) 解法三(嵌套if) 3.只出现一次的最大数字(619) 示例 1 解法一(count limit) 解法二(max) 4.有趣的电影(620) 解法一 5.换座位(626) 示例 …

同步jenkinsfile流水线(sync-job)

环境 变量&#xff1a;env&#xff08;环境变量&#xff1a;sit/dev/simulation/prod/all&#xff09;&#xff0c;job&#xff08;job-name/all&#xff09;目录&#xff1a;/var/lib/jenkins/jenkinsfile environment.json&#xff1a; [roottest-01 jenkinsfile]# cat env…

C++ string类的模拟实现

模拟实现string类不是为了造一个更好的轮子&#xff0c;而是更加理解string类&#xff0c;从而来掌握string类的使用 string类的接口设计繁多&#xff0c;故而不会全部涵盖到&#xff0c;但是核心的会模拟实现 库中string类是封装在std的命名空间中的&#xff0c;所以在模拟…

使用PostgreSQL构建强大的Web应用程序:最佳实践和建议

PostgreSQL是一个功能强大的开源关系型数据库,它拥有广泛的用户群和活跃的开发社区。越来越多的Web应用选择PostgreSQL作为数据库 backend。如何充分利用PostgreSQL的特性来构建健壮、高性能的Web应用?本文将给出一些最佳实践和建议。 一、选择合适的PostgreSQL数据类型 Pos…

【Vue】Mixin 混入

Vue Mixin 混入 1.简介 混入&#xff08;mixin&#xff09;提供了一种非常灵活的方式&#xff0c;来分发 Vue 组件中的可复用功能。一个混入对象可以包含任意组件选项&#xff08;如data、methods、mounted等等&#xff09;。当组件使用混入对象时&#xff0c;所有混入对象的…