【转载】linux进程及进程控制

Linux进程控制

 

  程序是一组可执行的静态指令集,而进程(process)是一个执行中的程序实例。利用分时技术,在Linux操作系统上同时可以运行多个进程。分时技术的基本原理是把CPU的运行时间划分成一个个规定长度的时间片,让每个进程在一个时间片内运行。当进程的时间片用完时系统就利用调度程序切换到另一个进程去运行。因此实际上对于具体单个CPU的机器来说某一个时刻只能运行一个进程。但由于每个进程运行的时间片很短(例如15个系统滴答=150ms),所以表面看起来好像所有进程在同时运行着。

  对于Linux0.11内核来讲,系统最多可由64个进程同时存在。除了第一个进程是"手工"建立以外,其余的都是进程使用系统调用fork创建的新进程,被创建的进程成为子进程(Child Process),创建者,则称为父进程(parent process)。内核程序使用进程标识号(process ID,pid)来标识每个进程。进程由可执行的指令代码,数据和堆栈区组成。进程中的代码和数据部分分别对应一个可执行文件中的代码段,数据段。每个进程只能执行自己的代码和访问自己的数据及堆栈区。进程之间相互之间的通信需要通过系统调用来进行。对于只有一个CPU的系统,在某一个时刻只能有一个进程正在运行。内核通过进程调度程序分时调度各个进程运行

  Linux系统中,一个进程可以在内核态(Kernal mode)或者用户态(user mode)下执行,因此Linux内核堆栈和用户堆栈是分开的。用户堆栈用于进程在用户态下临时保存调用函数的参数,局部变量等数据。内核堆栈则含有内核程序执行函数调用时的信息。

 

 

1.1任务数据结构

  内核程序通过进程表对进程进行管理,每个进程在进程表中占有一项。在Linux系统中,进程表项是一个task_struct任务结构指针。任务数据结构定义在头文件include/linux/sched.h中。有些书上称其为进程控制块PCB(Process Control Block)或者进程描述符PD(Processor Descriptor)。其中保存着用于控制和管理进程的所有信息。主要包括进程当前运行的状态信息,信号,进程号,父进程号,运行时间累计值,正在使用的文件和本任务的局部描述符以及任务状态段信息。该结构每个字段的含义如下所示。

 

当一个进程在执行时,CPU的所有寄存器中的值,进程的状态以及堆栈中的内容被称为该进程的上下文。当内核需要切换(switch)至另一个进程时,它就需要保存当前进程的所有状态,也即保存当前进程的上下文,以便在再次执行该进程时,能够恢复到切换时的状态执行下去。在Linux中,当前进程上下文均保存在进程的任务数据结构task_struct中。在发生中断时,内核就在被中断进程的上下文中,在内核状态下执行中断服务例程。但同时会保留所有需要用到的资源,以便中断服务结束时能恢复被中断进程的执行。

 

 

1.2 进程运行状态

  一个进程在其生存期内,可处于一组不同的状态下,称为进程状态。见下图2-6所示。进程状态保存在进程任务结构的state字段中。当进程正在等待系统中的资源而处于等待状态时,则称其处于睡眠等待状态。在Linux系统中,睡眠等待状态被分为可中断的和不可中断的等待状态。

 

运行状态(TASK_RUNNING)

  当进程正在被CPU执行,或已经准备就绪随时可以由调度程序执行,则称该进程为处于运行状态(running)。进程可以在内核态运行,也可以在用户态运行。当系统资源已经可用时,进程就被唤醒而进入准备运行状态,该状态称为就绪态。这些状态在内核中表示方法相同,都被称为处于TASK_RUNNING状态。

 

可中断睡眠状态(TASK_INTERRUPTIBLE)

  当进程处于可中断等待状态时,系统不会调度该进程执行。当系统产生一个中断或者释放了进程正在等待的资源,或者进程收到一个信号,都可以唤醒进程转换到就绪状态(运行状态)。

 

不可中断睡眠状态(TASK_UNINTERRUPTIBLE)

  与可中断睡眠状态类似。但处于该状态的进程只有被使用wake_up()函数明确唤醒时才能被转换到可运行就绪状态。

 

暂停状态(TASK_STOPPED)

  当进程收到信号SIGSTOP,SIGTSTP,SIGTTIN或SIGTTOU时就会进入暂停状态。可向其发送SIGCONT信号让进程转换到可运行状态。在Linux0.11中,还为实现对该状态的转换处理。处于该状态的进程将被作为进程终止来处理。

 

僵死状态(TASK_ZOMBIE)

  当进程已停止运行,但其父进程还没有询问其状态时,则称该进程处于僵死状态。

 

当一个进程的运行时间片用完,系统就会使用调度程序强制切换到其他的进程去执行。另外,如果进程在内核态执行时需要等待系统的某个资源,此时该进程就会调用sleep_on()或者sleep_on_interruptible()自愿放弃CPU使用权,而让调度程序去执行其他程序。进程则进入睡眠状态(TASK_UNINTERRUPTIBLE或TASK_INTERRUPTIBLE)。

  只有当进程从"内核运行态"转移到"睡眠状态"时,内核才会进行进程切换操作。在内核态下运行的进程不能被其他进程抢占,而且一个进程不能改变另一个进程的状态。为了避免进程切换时造成内核数据错误,内核在执行临街区代码时禁止一切中断。

 

 

1.3 进程初始化

  在boot/目录中引导程序把内核从磁盘上加载到内存中,并让系统进入保护模式下运行后,就开始执行系统初始化程序init/main.c。该程序首先确定如何分配使用系统物理内存,然后调用内核各部分的初始化函数分别对内存管理,中断处理,块设备和字符设备,进程管理以及硬盘和软盘硬件进行初始化处理。在完成了这些操作之后,系统各部分已经处于可运行状态。此后程序把自己"手工"移动到任务0(进程0)中运行,并使用fork()调用首次创建出进程1。在进程1种程序将继续进行应用环境的初始化并执行shell登陆程序。而原进程0则会在系统空闲时被调度执行,此时任务0仅执行pause()系统调用,并又会调用调度函数。

  "移动到任务0种执行"这个过程由宏move_to_user_mode(include/asm/system.h)完成。它把main.c程序执行流从内核态(特权级0)移动到了用户态(特权级3)的任务0种继续运行。在移动之前,系统在对调度程序的初始化过程(sched_init())中,首先对任务0的运行环境进行的设置。这包括人工预先设置好 任务0数据结构各字段的值(include/linux/shed.h),在全局描述符中添入任务0的任务状态段(TSS)描述符和局部描述符表(LDT)的段描述符,并把它们分别加载到任务寄存器tr和局部描述符表寄存器ldtr中。

  这里需要强调的是,内核初始化是一个特殊过程,内核初始化代码也即是任务0的代码。从任务0数据结构中设置的初始化数据可知,任务0的代码段和数据段的基址是0,段限长是640KB。而内核代码段和数据段的基地址时0,段限长是16MB,因此任务0的代码段和数据段分别包含在内核代码段和数据段中。内核初始化程序main.c也即是任务0中的代码,只是在移动到任务0之前系统正以内核态特权级0运行着main.c程序。宏move_to_user_mode的功能就是把运行特权级内核态的0级变换到用户态的3级,但是仍然继续执行原来的代码指令流。

  在移动到任务0的过程中,宏move_to_user_mode使用了中断返回指令造成特权级改变的方法。该方法的主要思想是在对站中构筑中断返回指令需要的内容,把返回地址的段选择符设置成任务0代码段选择符,其特权级为3。此后执行中断返回指令iret时将导致系统CPU从特权级0跳转到外层的特权级3上运行。参见下图所示的特权级发生变化时中断返回堆栈结构示意图。

 

         宏move_to_user_mode首先往内核堆栈中压入任务0数据段选择符和内核堆栈指针。然后压入标志寄存器内容。最后压入任务0代码段选择符合执行中断返回后需要执行的下一条指令的偏移位置。该偏移位置是iret后的一条指令处。

  当执行iret指令时,CPU把返回地址送入CS:EIP中,同时探出对站中标志寄存器内容。由于CPU判断出墓地代码段的特权级是3,与当前内核态的0级不同。于是CPU会把堆栈中的堆栈段选择符合堆栈指针弹出到SS:ESP中。由于特权级发生了变化,段寄存器DS,ES,FS和GS的值变得无效,此时CPU会把这些段寄存器清零。因此在执行了iret指令后需要重新加载这些段寄存器。此后,系统就开始特权级3运行在任务0的代码上。所使用的用户态堆栈还是原来在移动之前使用的堆栈。而其内核态堆栈则被指定为其任务数据解噢股所在页面的顶端开始(PAGE_SIZE+(long)&init_task)。由于以后在创建新进程时,需要复制任务0的任务数据结构,包括其用户堆栈指针,因此需要任务0的用户态堆栈在创建任务1(进程1)之前保持"干净"状态。

 

 

1.4 创建新进程

  Linux系统中创建新进程使用fork()系统调用。所有进程都是通过复制进程0而得到的,都是进程0的子进程。

  在创建新进程的过程中,系统首先在任务数组中找出一个还没有被任何进程使用的空项(空槽)。如果系统已经有64个进程在运行,则fork()系统调用会因为任务数组表中没有可用空项而出错返回。然后系统为新建进程在主内存区中申请一页内存来存放其任务数据结构信息,并复制当前进程任务数据结构中所有内容作为新进程人物数据结构的模板。为了防止这个还未处理完成的新进程被调度函数执行,此时应该立刻将新进程状态置为不可中断的等待状态(TASK_UNINTERRUPTIBLE)。

  随后对复制的任务数据结构进行修改。把当前进程设置为新进程的父进程,清除信号位图并复位新进程各统计值,并设置初始运行时间片值为15个系统嘀嗒数(150ms)。接着根据当前进程设置任务状态段(TSS)中各寄存器的值。由于创建进程时新进程返回值应为0,所以需要设置tss.eax=0。新建进程内核态堆栈指针tss.esp0被设置成新进程任务数据结构所在内存页面的顶端,而堆栈段tss.ss0被设置成内核数据段选择符。tss.ldt被设置为局部表描述符在GDT中所引值。如果当前进程使用了协处理器,把还需要协处理器的完整状态保存到新进程的tss.i387结构中。

  此后系统设置新任务的代码和数据段基址,限长并辅之当前进程内存分页管理的页表。如果父进程中也有文件是打开的,则应将对应文件的打开次数增1。接着在GDT中设置新任务的TSS和LDT描述符项,其中基地址信息指向新进程人物结构中的tss和ldt。最后再将新任务设置成可运行状态并返回新进程号。

 

1.5 进程调度

  由前面描述可知,Linux进程是抢占式的。被抢占的进程仍然处于TASK_RUNNING状态,只是暂时没有被CPU运行。进程的抢占发生在进程处于用户态执行阶段,在内核执行时是不能被抢占的。

  为了能让进程有效地使用系统资源,又能使进程有较快的响应时间,就需要对进程的切换调度采用一定的调度策略。在Linux0.11中采用了基于优先级排队的调度策略。

  调度程序:  

  schedule()函数首先扫描任务数组。通过比较每个就绪态(TASK_RUNNING)任务的运行时间递减滴答计数counter的值来确定当前哪个进程运行时间最少。哪一个的值大,就表示运行时间还不长,于是就选中该进程,并使用任务切换宏函数切换到该进程运行。

  如果此时所有处于TASK_RUNNING状态进程的时间片已经用完,系统就会根据每个进程的优先权值priority,对系统中所有进程(包括正在睡眠的进程)重新计算每个任务需要运行的时间片值counter。

  计算公式是:  counter= counter/2 + priority

  然后schedule()函数重新扫描人物数组中所有处于TASK_RUNNING状态,重复上述过程,直到选择出一个进程位置。最后调用switch_to()执行实际的进程切换操作。

  如果此时没有其他进程可运行,系统就会选择进程0运行。对于linux0.11来说,进程0会调用pause()把自己置为可中断的睡眠状态并在此调用schedule()。不过在调度进程运行时,schedule()并不在意进程0处于什么状态。只要系统空闲就调度进程0运行。

  进程切换:

  执行实际进程切换的任务由switch_to()宏定义的一段汇编代码完成。在进行切换之前,switch_to()首先检查要切换到的进程是否就是当前进程,如果是则什么也不做,直接退出。否则就首先把内核全局变量current置为新任务的指针,然后长跳转到新任务的任务状态段TSS组成的地指处,造成CPU执行任务切换操作。此时CPU会把其所有寄存器的转改保存到当前人物寄存器TR中TSS段选择符所指向的当前进程任务数据结构的tss结构中,然后把新任务状态段选择符所指向的新任务数据结构中tss结构中的寄存器信息恢复到CPU中,系统就正式开始运行新切换的任务了。这个过程可参考下图

 

 

1.6 终止进程

  当一个进程结束了运行或在半途中终止了运行,那么内核就需要释放该进程所占用的系统资源。这包括进程运行时打开的文件,申请的内存等。

  当一个用户程序调用exit()系统调用时,就会执行内核函数do_exit()。该函数会首先释放进程代码段和数据段占用的内存页面,关闭进程打开着的所有文件,对进程使用的当前工作目录,根目录和运行程序的i节点进行同步操作。如果进程有子进程,则让init进程作为其所有子进程的父进程。如果进程是一个会话头进程并且有控制终端,则释放控制终端,并向属于该会话的所有进程发送挂断信号SIGHUP,这通常会终止该会话中的所有进程。然后把进程状态置为僵死状态TASK_ZOMBIE。并向其原父进程发送SIGCHILD信号,通知其某个子进程已经终止。最后do_exit()调用调度函数去执行其他进程。由此可见在进程终止时,它的task_struct任务数据结构仍然保留着。因为其父进程还需要使用其中的信息。

  在子进程在执行期间,父进程通常使用wait()或waitpid()函数等待其某个子进程终止。当子进程被终止并处于僵死状态时,父进程就会把子进程运行所使用的时间累加到自己进程中。最终释放已终止子进程任务数据结构所占用的内存页面,并置空子进程在任务数组中占用的指针项。

转载于:https://www.cnblogs.com/mod109/p/6042073.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/429875.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

区分大小屏幕_VESA持续推动DisplayHDR认证计划,你的屏幕属于何种等级吗?

美国视频电子标准协会(VESA)今年可说是动作频频,年初先发布了专为OLED与其他自发光显示器所制订的DisplayHDR True Black高动态范围标准,下半年则更新DisplayHDR兼容测试规范至1.1版,并发布新的DisplayHDR 1400性能分级,至于年中所…

cordova 某个页面强制横屏_小白科普:从输入网址到最后浏览器呈现页面内容,中间发生了什么?...

老刘 1前言这篇文章是应网友之邀所写,主要描述一下我们访问网站时, 从输入网址到最后浏览器呈现内容,中间发生了什么。今天的文章主要专注于应用层,我拿了一个很简单的网络结构来讲。假定本机已经获取了IP地址,各种网络…

vue调用手机相机相册_今天才发现,点一下小米手机相册,能将照片一键制作成电影...

随着国产手机的发展,手机像素越来越高,里面的功能也越来越丰富,手机拍照成了不少人的日常,如果你很爱拍照,手机里有一大堆照片,那么教你用手机自带的相册功能,一键将照片制作成电影,…

unity 烘焙参数 设置_Unity通用渲染管线(URP)系列(九)——点光源和聚光灯

200篇教程总入口,欢迎收藏:放牛的星星:[教程汇总持续更新]Unity从入门到入坟——收藏这一篇就够了​zhuanlan.zhihu.com本文重点内容:1、支持更多类型的灯光2、包含实时的点光源和聚光灯3、为点光源和聚光灯烘焙阴影4、每个物体限…

c#日期转换周几_Java时间与日期

只有把眼前的事情做好,才能考虑其他的问题。众所周知,全世界在同一时刻看手表肯定不会看到同一个时间,因为地球是圆的,面对太阳的角度是不一样的,我们一般说时间几点几点,是指的本地时间,比如国…

Python开发之--前端 HTML基础

一:HTML介绍 HTML:超文本标记语言,标准通用标记语言下的一个应用。包括“头”部分(英语:Head)、和“主体”部分(英语:Body),其中“头”部提供关于网页的信息&…

给与用户建立dblink的权限_网络安全 之 NTFS安全权限

NTFS安全权限一、NTFS权限概述1、通过设置NTFS权限,实现不同的用户访问不同的权限2、分配了正确的访问权限后,用户才能访问其资源3、设置权限防止资源被篡改、删除二、文件系统概述 文件系统即在外部存储设备上组织文件的方法常用的文件系统:…

TCP 连接中的TIME_WAIT

原文:http://blog.csdn.net/wangpengqi/article/details/17245349 这就有个细节,一次http请求,谁会先断开TCP连接?什么情况下客户端先断,什么情况下服务端先断? 百度后,找到原因,主要…

丁丁打折网卷能用吗_微信群控还能用吗?现在什么群控还能使用吗?

微信群控系统还能用吗?为什么现在微信群控系统越来越被限制了呢?其实,微信群控我想在生活中占据着很大的位置!因为微信这么多的使用,现在微信使用人数都是几十亿了,所以很多人看重微信群控系统的市场&#…

错题整理

1.JAVA语言的下面几种数组复制方法中,哪个效率最高? A for循环逐一复制 B System.arraycopy C System.copyof D 使用clone方法 答案:B A、for循环的话,很灵活,但是代码不够简洁. for循环为什么慢,java中所…

xpath中两个冒号_爬虫学习(5)—XPath

之前我们写了一个简单的爬虫,在提取页面信息时我们使用正则表达式来匹配内容,但是正则表达式的书写比较繁琐,而且一旦错误就可能导致匹配失败。对于网页的节点来说,它可以定义id,class或其他的属性,而且节点…

canny算法的实现(android加载图片,数组写入文件换行)

Canny边缘检测首先要对图像进行高斯去噪,前面讲到了高斯去噪处理,这里从对图像灰度进行微分运算讲起吧。微分运算常用的方法是利用模板算子,把模板中心对应到图像的每一个像素位置,然后按照模板对应的公式对中心像素和它周围的像素…

【VirtualBox】VirtualBox的桥接网络模式,为啥网络不稳定?

网桥模式访问外网非常慢,经常卡死,ping时断时续 七搞八搞,反复重启了几次 TMD 就好了,也不知道什么情况,VirtualBox还是不太好使啊。。。。。 网桥模式 设置 如下: 参考资料: http://blog.csdn…

白盒基本路径发测试实验报告_软件生命周期、白盒测试、黑盒测试

继上一讲:隅巳毕月:达摩克里斯之——排序与查找技术​zhuanlan.zhihu.com我们今天来讲一下软件周期与两种软件测试方法软件开发应遵循一个软件的生命周期,通常把软件产品从提出、实现、使用、维护到停止使用、退役的过程称为软件生命周期。软…

Windows7睡眠后自动唤醒

笔者的电脑(Windows7 64位旗舰版)睡眠后,隔段时间后会自动唤醒。经两项配置后,解决了该问题。 1 禁用唤醒定时器 控制面板里进入"电源选项""更改计划设置"界面,如下图所示 单击上图的"更改高…

bootstrap 两个轮播图冲突_为什么使用bootstrap在一个页面同时做两个轮播效果时,只有第一个有效??...

我们都知道使用bootstrap做轮播效果非常快,但是有时候一个页面会需要两个轮播;但这个时候再次使用bootstrap做轮播效果时就会失效;原因在于bootstrap的Carousel问题,只要修改一下id,就好了~~这是第一个轮播&#xff1a…

Ajax的用法

1 Ajax是什么 1.1 Asynchronous JavaScript and XML(异步的javascript和xml) 实质为:使用浏览器内置的一个对象(XmlHttpRequest)向服务器发送请求,服务器返回xml数据或文本数据给浏览器,然后在浏…

Node.js server使用

一、创建项目 #创建项目目录 cd /data mkdir webroot cd webroot#初始化git git init vim .gitignore 输入: node_modules/ 保存: :wq#初始化npm,生成package.json npm init#安装express npm install -D express#创建入口文件 vim app.js输入: var expr…

模仿Linux内核kfifo实现的循环缓存

想实现个循环缓冲区(Circular Buffer),搜了些资料多数是基于循环队列的实现方式。使用一个变量存放缓冲区中的数据长度或者空出来一个空间来判断缓冲区是否满了。偶然间看到分析Linux内核的循环缓冲队列kfifo的实现,确实极其巧妙。…

领域模型(domain model)贫血模型(anaemic domain model)充血模型(rich domain model)

领域模型是领域内的概念类或现实世界中对象的可视化表示,又称为概念模型或分析对象模型,它专注于分析问题领域本身,发掘重要的业务领域概念,并建立业务领域概念之间的关系。 贫血模型是指使用的领域对象中只有setter和getter方法&…