RocketMQ 5.0 架构解析:如何基于云原生架构支撑多元化场景

作者:隆基

本文将从技术角度了解 RocketMQ 的云原生架构,了解 RocketMQ 如何基于一套统一的架构支撑多元化的场景。

文章主要包含三部分内容。首先介绍 RocketMQ 5.0 的核心概念和架构概览;然后从集群角度出发,从宏观视角学习 RocketMQ 的管控链路、数据链路、客户端和服务端如何交互;最后介绍消息队列最重要的模块存储系统,了解 RocketMQ 如何实现数据的存储和数据的高可用,以及如何利用云原生存储进一步提升竞争力。

01 概览

在介绍 RocketMQ 的架构之前,先从用户视角来看下 RocketMQ 的关键概念以及领域模型。如下图,这里按照消息的流转顺序来介绍。

在这里插入图片描述

在 RocketMQ 中,消息生产者一般对应业务系统的上游应用,在某个业务动作触发后发送消息到 Broker。Broker 是消息系统数据链路的核心,负责接收消息、存储消息、维护消息状态、消费者状态。多个 broker 组成一个消息服务集群,共同服务一个或多个 Topic。

生产者生产消息并发送到 Broker,消息是业务通信的载体,每个消息包含消息 ID、消息 Topic、消息体内容、消息属性、消息业务 key 等。每条消息都属于某个 Topic,表示同一个业务的语义。

在阿里内部,交易消息的 Topic 被称为 Trade,购物车消息称为 Cart,生产者应用会将消息发送到对应的 Topic 上。Topic 里还有 MessageQueue,用于消息服务的负载均衡与数据存储分片,每个 Topic 包含一个或多个 MessageQueue,分布在不同的消息 Broker。

生产者发送消息,Broker 存储消息,消费者负责消费消息。消费者一般对应业务系统的下游应用,同一个消费者应用集群共用一个 Consumer Group。消费者会与某个 Topic 产生订阅关系,订阅关系是 Consumer Group+Topic +过滤表达式的三元组,符合订阅关系的消息会被对应的消费者集群消费。

接下来就从技术实现角度进一步深入了解 RocketMQ。

02 架构概览

下图是一张 RocketMQ 5.0 的架构图,RocketMQ 5.0 的架构从上往下可分为 SDK、NameServer、Proxy 与 Store 层。

在这里插入图片描述

SDK 层包括 RocketMQ 的 SDK,用户基于 RocketMQ 自身的领域模型来使用 SDK。除了 RocketMQ 自身的 SDK 之外,还包括细分领域场景的业界标准 SDK,比如面向事件驱动的场景,RocketMQ 5.0 支持 CloudEvents 的 SDK;面向 IoT 的场景,RocketMQ 支持物联网 MQTT 协议的 SDK;为了方便更多传统应用迁移到 RocketMQ,还支持了 AMQP 协议,未来也会开源到社区版本里。

Nameserver 承担服务发现与负载均衡的职责。通过 NameServer,客户端能获取 Topic 的数据分片与服务地址,链接消息服务器进行消息收发。

消息服务包含计算层 Proxy 与存储层 RocketMQ Store。RocketMQ 5.0 是存算分离的架构,这里的存算分离强调的主要是模块和职责的分离。Proxy 与 RocketMQ Store 面向不同的业务场景可以合并部署,也可以分开部署。

计算层 Proxy 主要承载消息的上层业务逻辑,尤其是面向多场景、多协议的支持,比如承载 CloudEvents、MQTT、AMQP 的领域模型的实现逻辑与协议转换。面向不同的业务负载,还可将 Proxy 分离部署,独立弹性,比如在物联网场景,Proxy 层独立部署可以面向海量物联网设备连接数进行弹性伸缩,与存储流量扩缩容解耦。

RocketMQ Store 层则负责核心的消息存储,包括基于 Commitlog 的存储引擎、多元索引、多副本技术与云存储集成扩展。消息系统的状态全部下沉到 RocketMQ Store,其组件全部实现无状态化。

03 服务发现

下面详细看一下 RocketMQ 的服务发现,如下图所示。RocketMQ 的服务发现的核心是 NameServer,下图是 Proxy 与 Broker 合并部署的模式,也是 RocketMQ 最常见的模式。

在这里插入图片描述

每个 Broker 集群会负责某些 Topic 的服务,每个 broker 都会将自身服务的 topic 信息注册到 NameServer(下面简称 NS)集群,与每个 NameServer 进行通信,并定时与 NS 通过心跳机制来维持租约。服务注册的数据结构包含 topic 与 topic 分片。示例中 broker1 与 broker2 分别承载 topicA 的一个分片。在 NS 机器上会维护全局视图,topicA 有两个分片分别在 broker1 与 broker2。

RocketMQ SDK 在对 TopicA 进行正式的消息收发之前,会随机访问 NameServer 机器,从而获取到 topicA 有哪些分片,每个数据的分片在哪个 broker 上,与 broker 建立好长连接,然后再进行消息的收发。

大部分项目的服务发现机制会通过 zookeeper 或 etcd 等强一致的分布式协调组件来担任注册中心的角色,而 RocketMQ 有自己的特点,如果从 CAP 的角度来看,注册中心采用 AP 模式,NameServer 节点无状态,是 shared-nothing 的架构,有更高的可用性。

如下图,RocketMQ 的存算分离可分可合,采用分离的部署模式,RocketMQ SDK 直接访问无状态的 Proxy 集群。该模式可以应对更复杂的网络环境,支持多网络类型的访问如公网访问,实现更好的安全控制。

在这里插入图片描述

在整个服务发现机制中,NameServer、Proxy 都为无状态,可以随时进行节点增减。有状态节点 Broker 的增减基于 NS 的注册机制,客户端可以实时感知、动态发现。在缩容过程中,RocketMQ Broker 还可以进行服务发现的读写权限控制,对缩容的节点禁写开读,待未读消息全消费后,再实现无损平滑下线。

04 负载均衡

通过上文的介绍了解了 SDK 是如何通过 NameServer 来发现 Topic 的分片信息 MessageQueue,以及 Broker 地址的,基于这些服务发现的元数据,下面再来详细介绍下消息流量是如何在生产者、RocketMQ Broker 和消费者集群进行负载均衡的。

在这里插入图片描述

生产链路的负载均衡如下图如所示:生产者通过服务发现机制获取到 Topic 的数据分片以及对应的 Broker 地址。服务发现机制是比较简单,在默认情况下采用 RoundRobin 的方式轮询发送到各个 Topic 队列,保证 Broker 集群的流量均衡。在顺序消息的场景下会略有不同,基于消息的业务主键 Hash 到某个队列发送,如果有热点业务主键,Broker 集群也可能出现热点。除此之外,基于元数据还能根据业务需要扩展更多的负载均衡算法,比如同机房优先算法,可以降低多机房部署场景下的延迟,提升性能。

在这里插入图片描述

消费者的负载均衡:拥有两种类型的负载均衡方式,包括队列级负载均衡和消息粒度的负载均衡。

在这里插入图片描述

最经典的模式是队列级负载均衡,消费者知道 Topic 的队列总数和同一个 Consumer Group 下的实例数,可以按照统一的分配算法,类似于一致性 hash 的方式,使每个消费者实例绑定对应队列,只消费绑定队列的消息,每个队列的消息也只会被消费者实例消费。该模式最大的缺点是负载不均衡,消费者实例要绑定队列且有临时状态。如果有三个队列,有两个消费者实例,则必然有消费者需要消费 2/3 的数据,如果有 4 个消费者,则第四个消费者会空跑。因此,RocketMQ 5.0 引入了消息粒度的负载均衡机制,无需绑定队列,消息在消费者集群随机分发,保障消费者集群的负载均衡。更重要的是,该模式更加符合未来 Serverless 化的趋势,Broker 的机器数、Topic 的队列数与消费者实例数完全解耦,可以独立扩缩容。

05 存储系统

前面通过架构概览和服务发现机制,已经对 RocketMQ 有比较全局性的了解,接下来将深入 RocketMQ 的存储系统。存储系统对 RocketMQ 的性能、成本、可用性有决定性作用。RocketMQ 的存储核心由 commitlog、ConsumeQueue 与 index 文件组成。

在这里插入图片描述

消息存储首先写到 commitlog,刷盘并复制到 slave 节点完成持久化,commitlog 是 RocketMQ 存储的 source of true,可以通过它构建完整的消息索引。

相比于 Kafka,RocketMQ 将所有 topic 的数据都写到 commitlog 文件,最大化顺序 IO,使得 RocketMQ 单机可支撑万级的 topic。

写完 commitlog 之后,RocketMQ 会异步分发出多个索引,首先是 ConsumeQueue 索引,与 MessageQueue 对应,基于索引可以实现消息的精准定位,可以按照 topic、队列 ID 与位点定位到消息,消息回溯功能也是基于该能力实现的。

另外一个很重要的索引是哈希索引,它是消息可观测的基础。通过持久化的 hash 表来实现消息业务主键的查询能力,消息轨迹主要基于该能力实现。

除了消息本身的存储之外,broker 还承载了消息元数据的存储以及 topic 的文件,包括 broker 会对哪些 topic 提供服务,还维护了每个 topic 的队列数、读写权限、顺序性等属性,subscription、consumer offset 文件维护了 topic 的订阅关系以及每个消费者的消费进度,abort、checkpoint 文件则用于完成重启后的文件恢复,保障数据完整性。

06 Topic 高可用

前面站在单机的视角,从功能的层面学习 RocketMQ 的存储引擎,包括 commitlog 和索引。现在重新跳出来再从集群视角看 RocketMQ 的高可用。

在这里插入图片描述

RocketMQ 的高可用指当 RocketMQ 集群出现 NameServer、Broker 局部不可用时,指定的 topic 依然可读可写。

RocketMQ 可以应对三类故障场景。

场景 1:某对 Broker 的单机不可用

比如,当 Broker2 主节点宕机,备节点可用,TopicA 依然可读可写,其中分片 1 可读可写,分片 2 可读不可写,TopicA 在分片 2 的未读消息依然可以消费。总结来说,即只要 Broker 集群里任意一组 Broker 存活一个节点,则 Topic 的读写可用性不受影响。如果某组 Broker 主备全部宕机,则 Topic 新数据的读写也不受影响,未读消息会延迟,待任意主备启动才能继续消费。

在这里插入图片描述

场景 2:NameServer 集群部分不可用

由于 NameServer 是 shared-nothing 架构,每个节点都为无状态,并且为 AP 模式,无需依赖多数派算法,因此只要有一台 NameServer 存活,则整个服务发现机制都正常,Topic 的读写可用性不受影响。

在这里插入图片描述

场景 3:NameServer 全部不可用

在这里插入图片描述

由于 RocketMQ 的 SDK 对服务发现元数据有缓存,只要 SDK 不重启,依然可以按照当下的 topic 元数据继续进行消息收发。

07 MessageQueue 的高可用基础概念

上一个小节中讲到 Topic 的高可用原理,从它的实现中可以发现虽然 Topic 持续可读可写,但是 Topic 的读写队列数发生变化。队列数变化,会对某些数据集成的业务有影响,比如说异构数据库 Binlog 同步,同一个记录的变更 binlog 会写入不同的队列,重放 binlog 可能会出现乱序,导致脏数据。所以还需要对现有的高可用进一步增强,要保障在局部节点不可用时,不仅 Topic 可读可写,并且 Topic 的可读写队列数量不变,指定的队列也是可读可写的。

如下图,NameServer 或 Broker 任意出现单点不可用,Topic A 依然保持 2 个队列,每个队列都具备读写能力。

在这里插入图片描述

5.0 HA 的特点

为了解决上述的场景,RocketMQ 5.0 引入全新的高可用机制,核心概念如下:

  • DLedger Controller:基于 raft 协议的强一致元数据组件,执行选主命令,维护状态机信息。
  • SynStateSet:维护处于同步状态的副本组集合,集合里的节点都有完整的数据,主节点宕机后,从集合中选择新的主节点。
  • Replication:用于不同副本之间的数据复制、数据校验、截断对齐等事项。

在这里插入图片描述

下面是 5.0 HA 的架构全景图,新的高可用架构具备多个优势。

在这里插入图片描述

  • 在消息存储引入了朝代与开始位点的数据,基于这两个数据完成数据校验、截断对齐,在构建副本组的过程中简化数据一致性逻辑。
  • 基于 DledgerController,无需引入 zk、etcd 等外部分布式一致性系统,并且 DledgerController 还可与 NameServer 合并部署,简化运维、节约机器资源。
  • RocketMQ 对 DledgerController 是弱依赖,即便 Dledger 整体不可用,也只会影响选主,不影响正常的消息收发流程。
  • 可定制,用户可以根据业务对数据可靠性、性能、成本综合选择,比如副本数可以是 2、3、4,副本直接可以是同步复制或异步复制。如 2-2 模式表示 2 副本并且两个副本的数据同步复制;2-3 模式表示 3 副本,只要有 2 个副本写成功即认为消息持久化成功。用户还可以将其中的副本部署在异地机房,异步复制实现容灾。如下图:

在这里插入图片描述

08 云原生存储-对象存储

上文讲到的存储系统都是 RMQ 面向本地文件系统的实现,在云原生时代,将 RocketMQ 部署到云环境可以进一步利用云原生基础设施,比如云存储来进一步增强 RocketMQ 的存储能力。RocketMQ 5.0 提供了多级存储的特性,是内核级的存储扩展,面向对象存储扩展了对应的 Commitlog、ConsumeQueue 与 IndexFile。且采用了插件化的设计,多级存储可以有多种实现,在阿里云上基于 OSS 对象服务实现,在 AWS 上则可以面向 S3 的接口来实现。

通过引入了云原生的存储,RocketMQ 释放了很多红利。

在这里插入图片描述

第一个是无限存储能力,消息存储空间不受本地磁盘空间的限制,原来是保存几天,现在可以几个月、甚至存一年。另外对象存储也是业界成本最低的存储系统,特别适合冷数据存储。

第二个是 Topic 的 TTL,原来多个 Topic 的生命周期是和 Commitlog 绑定,统一的保留时间。现在每个 Topic 都会使用独立的对象存储 Commitlog 文件,可以有独立的 TTL。

第三个是存储系统进一步的存算分离,能把存储吞吐量的弹性和存储空间的弹性分离。

第四个是冷热数据隔离,分离了冷热数据的读链路,能大幅度提升冷读性能,不会影响在线业务。

09 总结

  • RocketMQ 整体架构:

在这里插入图片描述

  • RocketMQ 负载均衡:AP 优先、分合模式、横向扩展、负载粒度;
  • RocketMQ 存储设计:存储引擎、高可用、云存储。

【活动】带你玩转 RocketMQ,角逐「RocketMQ 首席评测官」

为了更好地长期得到开发者实际使用中的反馈和建议,联合阿里云开发者社区推出了“寻找 RocketMQ 首席评测官”活动,寻找在消息领域有技术实践经验、愿意深度评测产品并提出宝贵建议的开发者。期待您的加入,帮助 Apache RocketMQ 以及阿里云消息产品持续提升竞争力。

活动入口:

点击此处立即参与活动:(或前往文末阅读原文进入)

https://developer.aliyun.com/topic/rocketmq?utm_content=g_1000377381&spm=1000.2115.3001.5954

可以直接进行产品评测:

https://developer.aliyun.com/mission/review/rocketmqtest?spm=a2c6h.28281744.J_2889796290.5.c66c5bacLDNt46

点击此处,立即参与活动

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/42558.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

优测云服务平台|【压力测试功能升级】轻松完成压测任务

一、本次升级主要功能如下: 1.多份报告对比查看测试结果 2.报告新增多种下载格式 Word格式Excel格式 3.新增多种编排复杂场景的控制器 漏斗控制器并行控制器事务控制器仅一次控制器分组控制器集合点 4.新增概览页面,包含多种统计维度 二、报告对比…

开源语音聊天软件Mumble

网友 大气 告诉我,Openblocks在国内还有个版本叫 码匠,更贴合国内软件开发的需求,如接入了国内常用的身份认证,接入了国内的数据库和云服务,也对小程序、企微 sdk 等场景做了适配。 在 https://majiang.co/docs/docke…

类与对象(上)

类与对象(上) 一、面向过程和面向对象的区别二、类1、类的引入2、类的定义(1)类的基本定义(2)类的成员函数的定义方法 3、类的访问限定符4、封装5、驼峰法命名规则6、类的作用域7、类的实例化(1…

金蝶软件实现导入Excel数据分录行信息到单据体分录行中

>>>适合KIS云专业版V16.0|KIS云旗舰版V7.0|K/3 WISE 14.0等版本<<< 金蝶软件中实现[导入Excel数据业务分录行]信息到[金蝶单据体分录]中,在采购订单|采购入库单|销售订单|销售出库单等类型单据中,以少量的必要字段在excel表格中按模板填列好,很方便快捷地从…

IntelliJ IDEA(简称Idea) 基本常用设置及Maven部署---详细介绍

一&#xff0c;Idea是什么&#xff1f; 前言&#xff1a; 众所周知&#xff0c;现在有许多编译工具&#xff0c;如eclipse&#xff0c;pathon, 今天所要学的Idea编译工具 Idea是JetBrains公司开发的一款强大的集成开发环境&#xff08;IDE&#xff09;&#xff0c;主要用于Java…

Rancher管理K8S

1 介绍 Rancher是一个开源的企业级多集群Kubernetes管理平台&#xff0c;实现了Kubernetes集群在混合云本地数据中心的集中部署与管理&#xff0c;以确保集群的安全性&#xff0c;加速企业数字化转型。Rancher 1.0版本在2016年就已发布&#xff0c;时至今日&#xff0c;Ranche…

CS:GO升级 Linux不再是“法外之地”

在前天的VAC大规模封禁中&#xff0c;有不少Linux平台的作弊玩家也迎来了“迟到”的VAC封禁。   一直以来&#xff0c;Linux就是VAC封禁的法外之地。虽然大部分玩家都使用Windows平台进行游戏。但实际上&#xff0c;使用Linux畅玩CS:GO的玩家也不在少数。 以前V社主要打击W…

06-微信小程序-注册程序-场景值

06-微信小程序-注册程序 文章目录 注册小程序参数 Object object案例代码 场景值场景值作用场景值列表案例代码 注册小程序 每个小程序都需要在 app.js 中调用 App 方法注册小程序实例&#xff0c;绑定生命周期回调函数、错误监听和页面不存在监听函数等。 详细的参数含义和使…

【LeetCode】543.二叉树的直径

题目 给你一棵二叉树的根节点&#xff0c;返回该树的 直径 。 二叉树的 直径 是指树中任意两个节点之间最长路径的 长度 。这条路径可能经过也可能不经过根节点 root 。 两节点之间路径的 长度 由它们之间边数表示。 示例 1&#xff1a; 输入&#xff1a;root [1,2,3,4,5]…

高并发内存池(centralcache)[2]

Central cache threadcache是每个线程独享&#xff0c;而centralcache是多线程共享&#xff0c;需要加锁&#xff08;桶锁&#xff09;一个桶一个锁 解决外碎片问题&#xff1a;内碎片&#xff1a;申请大小超过实际大小&#xff1b;外碎片&#xff1a;空间碎片不连续&#x…

跨境电商ERP源码大揭秘,让你少走弯路

本文将深入介绍跨境电商ERP源码的重要性以及如何选择和应用它们&#xff0c;让你的电商业务更高效、顺畅。 跨境电商ERP源码的重要性 提升管理效率 跨境电商运营面临着众多挑战&#xff0c;如订单管理、库存追踪和财务报告等。跨境电商ERP源码能够集成这些功能&#xff0c;帮…

自动驾驶,一次道阻且长的远征|数据猿直播干货分享

‍数据智能产业创新服务媒体 ——聚焦数智 改变商业 在6月的世界人工智能大会上&#xff0c;马斯克在致辞中宣称&#xff0c;到2023年底&#xff0c;特斯拉便可实现L4级或L5级的完全自动驾驶&#xff08;FSD&#xff09;。两个月之后&#xff0c;马斯克又在X社交平台上发言&am…

java面试强基(16)

目录 clone方法的保护机制 Java中由SubString方法是否会引起内存泄漏&#xff1f; Java中提供了哪两种用于多态的机制? 程序计数器(线程私有) 如何判断对象是否是垃圾&#xff1f; clone方法的保护机制 clone0方法的保护机制在Object中是被声明为 protected的。以User…

1000元到3000元预算的阿里云服务器配置大全

1000元、2000元或3000元预算能够买的阿里云服务器配置有哪些&#xff1f;可以选择ECS通用算力型u1云服务器、ECS计算型c7或通用型g7实例规格&#xff0c;当然&#xff0c;如果选择轻量应用服务器的话&#xff0c;更省钱&#xff0c;阿里云百科分享1000-3000元预算能买的阿里云服…

三、Dubbo 注册中心

三、Dubbo 注册中心 3.1 注册中心概述 主要作用 动态加入&#xff1a;服务提供者通过注册中心动态地把自己暴露给其他消费者动态发现&#xff1a;消费者动态地感知新的配置、路由规则和新的服务提供者动态调整&#xff1a;注册中心支持参数的动态调整&#xff0c;新参数自动更…

如何用轻叶H5制作一份调查问卷

在营销落地页中&#xff0c;问卷类H5是一种制作简单&#xff0c;易于传播的落地页&#xff0c;通过精巧的设计和严密的逻辑设置&#xff0c;问卷类H5的投放效果也是不容小觑的。 问卷类H5在制作中有以下不可缺少的要素&#xff1a; 清晰的标题和简要的说明 标题应该简明扼要地…

用pytorch实现AlexNet

AlexNet经典网络由Alex Krizhevsky、Hinton等人在2012年提出&#xff0c;发表在NIPS&#xff0c;论文名为《ImageNet Classification with Deep Convolutional Neural Networks》&#xff0c;论文见&#xff1a;http://www.cs.toronto.edu/~hinton/absps/imagenet.pdf &#xf…

【观察者设计模式详解】C/Java/JS/Go/Python/TS不同语言实现

简介 观察者模式&#xff08;Observer Pattern&#xff09;是一种行为型模式。它定义对象间的一种一对多的依赖关系&#xff0c;当一个对象的状态发生改变时&#xff0c;所有依赖于它的对象都得到通知并被自动更新。 观察者模式使用三个类Subject、Observer和Client。Subject…

策略梯度方法

策略梯度方法 数学背景 给定一个标量函数 J ( θ ) J\left(\theta\right) J(θ)&#xff0c;利用梯度上升法&#xff0c;使其最大化&#xff0c;此时的 π θ \pi_\theta πθ​就是最优策略。 θ t 1 θ t α ∇ θ J ( θ t ) \theta_{t1}\theta_t\alpha \nabla_\theta…