利用Opencv实现人像迁移

前言: Hello大家好,我是Dream。 今天来学习一下如何使用Opencv实现人像迁移,欢迎大家一起参与探讨交流~

本文目录:

  • 一、实验要求
  • 二、实验环境
  • 三、实验原理及操作
    • 1.照片准备
    • 2.图像增强
    • 3.实现美颜功能
    • 4.背景虚化
    • 5.图像二值化处理
    • 6.人像迁移
  • 四、实验结果
    • 1.原图、空间直方图均衡化后图像
    • 2.美颜后的人物图像与更改后的风景图像
    • 3.人像二值图
    • 4.人像迁移图
  • 五、结果分析
  • 六、附录代码
  • 七、实验报告

一、实验要求

利用Python和Opencv算法,实现下述功能:

  • 从网上下载一张纯色背景前的老人面部照片,并且要求背景颜色与皮肤、衣服的颜色区别较大。
  • 准备一张风景图片。
  • 利用图像增强算法处理人像照片,以提升照片的品质。
  • 利用图像处理算法去除老人面部的皱纹或色斑,实现美颜功能。
  • 利用图像处理算法处理风景图片,使风景图片变得模糊,实现背景虚化。
  • 利用图像处理算法将步骤4得到的人像图像进行二值化处理,人像部分为0,背景部分为1。
  • 利用步骤6得到的二值图像将步骤5得到的风景图像中用于合成人像区域的像素置为黑色后,与步骤4得到的人像图像进行合成,实现人像迁移。

撰写实验报告,将上述处理的原理与处理流程进行介绍;保存上述每一步的结果图像,并附加在实验报告中;最终对处理结果进行分析,并附加程序

二、实验环境

解释器:Python3.9、开发环境:PyCharm

三、实验原理及操作

1.照片准备

老人照片(上)、风景照片(下)
在这里插入图片描述

2.图像增强

图像增强使用自适应直方图均衡化操作。
因为原始图像为RGB彩色图像,直接使用直方图均衡化操作后会使颜色失真,故先将原始图像转化到HSI空间,对其中I通道(亮度)进行直方图均衡化,再转回RGB空间,这就实现了彩色图像的直方图均衡化,图像的亮度直方图会分布的更加均衡。如果在 RGB 彩色空间内完成直方图均衡化的,虽然的确有将原图中的阴暗部分变得明亮起来,但是颜色的失真也是比较严重的。在均衡化过程中不仅改变了亮度,也改变了彩色,产生了不正确的彩色。
在 HSI 彩色空间均衡化方法得到的结果图像效果是比较好的,整个图像都有效的加亮了,而彩色本身(色调)是不变的。这里使用的是自适应直方图均衡化,能够降低图像的全局依赖性,更多的保留图像的局部特征。

3.实现美颜功能

磨皮算法的功能就是消除脸部的斑点、瑕疵或者杂色,使得人物脸部更加细腻,轮廓更加清晰。 在实际的人脸磨皮中,一般还包含不同程度的预处理。我们使用传统的方法先对人脸中的脸部皮肤区域进行提取。基于皮肤的颜色特性,我们将图像转换到HSV色域,然后对逐像素点阈值判断,分离出了人脸面部皮肤像素点集合。在代码运行中,我们先对整张图片进行了双边滤波,然后将双边滤波结果和原图片输入原函数,使用皮肤像素点判断的方法,将原图中皮肤的像素替换成了对应的双边滤波后的像素。使用双边滤波,能够使滤波算法在处理人脸皮肤时,不对其它器官,如嘴唇,眼睛,眉毛等造成影响,同时不会干扰到背景。
注意滑动窗口的大小和双边方差的参数不宜设置的过大,否则会造成磨皮效果模糊或者过于磨皮。 同时设置过小,磨皮效果不明显,我们使用的是参数是:15*3,这样可以很好的实现我们想要的效果。

4.背景虚化

利用图像处理算法中的均值滤波处理风景图片,使风景图片变得模糊,实现背景虚化。然后再利用cv2.resize方法将风景图片尺寸调整为与人像图片一致,便于之后进行人像迁移。

5.图像二值化处理

获取纯色背景的RGB值,遍历整张图片,颜色接近背景颜色的像素点置为1,其余部分置为0。
同时我也想到了第二种方法,就是额外准备一张没有人像的纯色背景的图片,将原始图片与背景图片做减法并取绝对值,背景部分两张图片RGB值相似相减后趋近于0,其余部分不为0。这里注意的是由于设备原因,使用手机拍摄的背景图会因人像的离开而自动补光改变亮度,故在这里额外使用了亮度增强算法,将转化为HSI空间的背景图I通道乘系数1.25,再转回RGB空间,实现亮度补足。相减后将近似于0的像素点置为1,其余部分置为0,实现图片二值化操作。

6.人像迁移

首先将上述二值化图片进行中值滤波处理,去除一些可能存在的噪声点(黑色区域中的白色点或白色区域中的黑色点),然后进行腐蚀操作,去毛刺儿,腐蚀边界,一定的腐蚀膨胀操作使人像更加贴合。将二值化图片中人像部分置为1,其余部分置为0,与原始图片相乘后即可得到背景为黑色,人像部分正常的图片。
将虚化后的风景图片与人像部分为0、背景部分为1的二值图相乘,即可得到人像区域置为黑色的风景图。再将该图与上一步得到的背景为黑、人像不变的图片相加,即可得到人像迁移后的图片。

四、实验结果

1.原图、空间直方图均衡化后图像

图1 原图(左)、I空间直方图均衡化后图像(右)对比图
在这里插入图片描述

2.美颜后的人物图像与更改后的风景图像

图2、图3美颜后的人物图像(左)与更改尺寸并虚化后的风景图像(右)

3.人像二值图

图4、图5 经过图像处理的人像二值图
在这里插入图片描述

4.人像迁移图

图6、图7 人像部分为黑风景图(左)与人像迁移图(右)
在这里插入图片描述

五、结果分析

对亮度空间进行直方图均衡化操作后,人脸部分亮度明显增强,一些特征更加清晰可辨,说明图像增强效果良好。人像图片的二值化处理,但相较于法二,法一只能够对单一纯色背景进行操作,若背景中有噪声点(如白墙上的黑色污渍等)效果就会变差。但对于本次实验而言,我们采用的是方法一,因为我们的背景完全是白色,我们便可以十分准确地得到我们想要的效果。人像迁移的过程中可能存在白边,这时使用腐蚀膨胀操作将人像收缩,可实现消除白边的操作。最后人像迁移效果良好。

六、附录代码

# @Time : 2022/10/31 16:18
# @Author : 是Dream呀
# @File : 图像增强与合成.py
import cv2
import numpy as np# 图片展示函数
def show(name, img):cv2.imshow(name, img)cv2.waitKey(0)cv2.destroyAllWindows()# 1.自适应直方图均衡化进行图像增强
def hist(image):img = image.copy()# 先转换到 HSI 色彩空间,再将处理后的结果转换到 RGB 色彩空间。img = cv2.cvtColor(img, cv2.COLOR_BGR2HLS)I = img[:, :, 1]clahe = cv2.createCLAHE(clipLimit=1)  # 自适应直方图均衡化img[:, :, 1] = clahe.apply(img[:, :, 1])  # 将cv2.createCLAHE()应用到每个通道上。show('Equalization', np.hstack((I, img[:, :, 1])))img = cv2.cvtColor(img, cv2.COLOR_HLS2BGR)return imgIMG = cv2.imread('1.png')
IMG = cv2.resize(IMG, (422,496))
show('Original image', IMG)
IMG_new = hist(IMG)  # 自适应直方图均衡化进行图像增强
show('Contrast', np.hstack((IMG, IMG_new)))
cv2.imwrite('img1.jpg', np.hstack((IMG, IMG_new)))# 2.图像美化
# 双边滤波
dst = cv2.bilateralFilter(IMG_new, 15, 35, 35)
show('Beauty', dst)
cv2.imwrite('img2.jpg', dst)# 3.利用图像处理算法处理风景图片,使风景图片变得模糊,实现背景虚化
test = cv2.imread('2.png')
test = cv2.blur(test, (9, 9))  # 使用均值滤波处理
test = cv2.resize(test, (422,496))  # 将风景图片尺寸调整为与人像图片一致
show('Falsification', test)
cv2.imwrite('img3.jpg', test)# 4.对图像进行二值化处理
img = IMG.copy()
print(len(img))
print(len(img[0]))
print(len(img[1]))
for i in range(len(img)):  # 获取纯色背景的RGB值,遍历整张图片for j in range(len(img[1])):if 255 == IMG[i][j][0] and 255 == IMG[i][j][1] and 255 == IMG[i][j][2]:  # 颜色接近背景颜色的像素点置为1,其余部分置为0img[i][j] = 255else:img[i][j] = 0# 5.人像迁移
# 中值滤波处理
img = cv2.medianBlur(img, 3)
# 先进行腐蚀操作,再做膨胀操作
kernel = np.ones((3, 3), np.uint8)  # 腐蚀操作,去毛刺儿,腐蚀边界
img = cv2.dilate(img, kernel, iterations=1)
show('Handle', img)
cv2.imwrite('img4.jpg', img)img_t = np.where(img == 0, 1, 0)  # 人像部分置为1,其余部分置为0
img = np.uint8(img_t * IMG_new)  # 与原始图片相乘
show('Opposite Handle', img)
cv2.imwrite('img5.jpg', img)  # 背景为黑、人像不变的图片# 像素值0和1交换 等价于img_t = np.where(img_t == 0, 1, 0)
img_t = np.where(img_t == 1, 2, img_t)
img_t = np.where(img_t == 0, 1, img_t)
img_t = np.where(img_t == 2, 0, img_t)
test = np.uint8(test * img_t)  # 得到人像区域置为黑色的风景图
show('Processed landscape map',test)
cv2.imwrite('img6.jpg',test)# 相加得到迁移后的图像
test = test + img
show('Transfer', test)
cv2.imwrite('img7.jpg', test)

七、实验报告

这里是完整的实验报告–图像处理实战–Opencv实现人像迁移完整实验报告,需要的同学自行取走~

🌲🌲🌲 好啦,这就是今天要分享给大家的全部内容了,我们下期再见!
❤️❤️❤️如果你喜欢的话,就不要吝惜你的一键三连了~
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/42307.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

item_password-获得淘口令真实url

一、接口参数说明: item_password-获得淘口令真实url ,点击更多API调试,请移步注册API账号点击获取测试key和secret 公共参数 请求地址: https://api-gw.onebound.cn/taobao/item_password 名称类型必须描述keyString是调用key&#xff08…

tomcat源码修改与编译

1、获取源码 从github下载其源码:https://github.com/apache/tomcat 2、选择版本 切换到对应版本(直接用相对应的Git tag即可): git checkout 9.0.793、修改源代码,并且生成补丁 这里我们以修改去掉新版本的ws的检…

129.【Spring 注解 IOC】

Spring 注解 (一)、组件注册1. Configuration 与 Bean 容器注册组件(1).无注解注入方式(2).注解注入方式 2. ComponentScan 自动扫描组件和自动扫描规则(1).无注解扫描方式(2).注解扫描注入方式(3).指定扫描或不扫描的包 (过滤) 3. 自定义TypeFilter指定过滤规则 Filter(1).自定…

QT多屏显示程序

多屏显示的原理其实很好理解,就拿横向扩展来说: 计算机把桌面的 宽度扩展成了 w1(屏幕1的宽度) w2(屏幕2的宽度) 。 当一个窗口的起始横坐标 > w1,则 他就被显示在第二个屏幕上了。 drm设备可以多用户同时打开&am…

Spring MVC 简介

目录 1. 什么是MVC2. 什么是SpringMVC 1. 什么是MVC MVC是一种常用的软件架构模式。可以看作是一种设计模式,也可以看作是一种软件框架。经典MVC模式中,M是指模型,V是视图,C则是控制器,使用MVC的目的是将M和V的实现代…

golang中使用chan控制协程并发简单事例

func main() {processNum : 5ch : make(chan struct{}, processNum)for true {ch <- struct{}{}go func() {defer func() {<-ch}()fmt.Println("我是协程", time.Now().UnixNano())time.Sleep(time.Second * 5)}()} } 可以看到&#xff0c;这里每5s会执行一次带…

Linux15 消息队列 线程

目录 1、进程间通信IPC&#xff1a; 2、多线程 3、向消息队列中写入数据 4、从消息队列中读取数据 5、多线程&#xff1a; 6、将多线程的数据返回给主…

数据库索引优化策略与性能提升实践

文章目录 什么是数据库索引&#xff1f;为什么需要数据库索引优化&#xff1f;数据库索引优化策略实践案例&#xff1a;索引优化带来的性能提升索引优化规则1. 前导模糊查询不适用索引2. 使用IN优于UNION和OR3. 负向条件查询不适用索引4. 联合索引最左前缀原则5. 范围条件查询右…

【Mysql】MVCC版本机制的多并发

&#x1f307;个人主页&#xff1a;平凡的小苏 &#x1f4da;学习格言&#xff1a;命运给你一个低的起点&#xff0c;是想看你精彩的翻盘&#xff0c;而不是让你自甘堕落&#xff0c;脚下的路虽然难走&#xff0c;但我还能走&#xff0c;比起向阳而生&#xff0c;我更想尝试逆风…

PostgreSQL空值的判断

PostgreSQL空值的判断 空值判断非空判断总结 空值判断 -- 查询为空的 is null,sql简写isnull select * from employees where manager_id isnull;select * from employees where manager_id is null;非空判断 -- 查询不为空的 is not null;sql简写notnull select * from empl…

Java【数据结构】二分查找

&#x1f31e; 题目&#xff1a; &#x1f30f;在有序数组A中&#xff0c;查找目标值target &#x1f30f;如果找到返回索引 &#x1f30f;如果找不到返回-1 算法描述解释前提给定一个内含n个元素的有序数组A&#xff0c;满足A0<A1<A2<<An-1,一个待查值target1设…

mysql 8.0安装

操作系统&#xff1a;22.04.1-Ubuntu apt 安装命令 sudo apt install mysql-client-core-8.0 sudo apt install mysql-server-8.0终端输入 mysql 可以直接免密登录 如果此时提示需要密码&#xff0c;则可以进入配置文件&#xff0c;设置免密登录 sudo vim /etc/mysql/mysq…

【探索Linux】—— 强大的命令行工具 P.5(yum工具、git 命令行提交代码)

阅读导航 前言一、软件包管理器 yum1.yum的概念yum的基本指令使用例子 二、git 命令行提交代码总结温馨提示 前言 前面我们讲了C语言的基础知识&#xff0c;也了解了一些数据结构&#xff0c;并且讲了有关C的一些知识&#xff0c;也学习了一些Linux的基本操作&#xff0c;也了…

20W IP网络吸顶喇叭 POE供电吸顶喇叭

SV-29852T 20W IP网络吸顶喇叭产品简介 产品用途&#xff1a; ◆室内豪华型吸顶喇叭一体化网络音频解码扬声器&#xff0c;用于广播分区音频解码、声音还原作用 ◆应用场地如火车站、地铁、教堂、工厂、仓库、公园停车场等&#xff1b;室内使用效果均佳。 产品特点&#xff…

pytorch_lightning报错 You requested gpu: [1],But your machine only has: [0]

pytorch_lightning报错 You requested gpu: [1]&#xff0c;But your machine only has: [0] 问题及分析 报错图片如下&#xff1a; 分析 gpu:[1]指代的gpu的标号&#xff0c;如果笔记本中只包含一个GPU&#xff0c;一般序号为[0].所以无法找到程序指定的GPU。 解决方法 …

编程语言学习笔记-架构师和工程师的区别,PHP架构师之路

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;全栈领域新星创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月CSDN上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责…

Egg.js构建一个stream流式接口服务

经常需要用到 stream 流式接口服务,比如&#xff1a;大文件下载、日志实时输出等等。本文将介绍如何使用Egg.js构建一个 stream 流式接口服务。 一、准备工作 目录结构&#xff1a; app//controllerindex.jstest.txttest.shindex.js 控制器test.txt 测试文件&#xff0c;最好…

5G+AI数字化智能工厂建设解决方案PPT

导读&#xff1a;原文《5GAI数字化智能工厂建设解决方案》&#xff08;获取来源见文尾&#xff09;&#xff0c;本文精选其中精华及架构部分&#xff0c;逻辑清晰、内容完整&#xff0c;为快速形成售前方案提供参考。数字化智能工厂定义 智能基础架构协同框架 - 端、边、云、网…

激光雷达 01 线数

一、线数 对于 360 旋转式和一维转镜式架构的激光雷达来说&#xff0c;有几组激光收发模块&#xff0c;垂直方向上就有几条线&#xff0c;被称为线数。这种情况下&#xff0c;线数就等同于激光雷达内部激光器的数量[参考]。 通俗来讲&#xff0c;线数越高&#xff0c;激光器的…

npm run xxx 的时候发生了什么?(以npm run dev举例说明)

文章目录 一、去package.json寻找scripts对应的命令二、去node_modules寻找vue-cli-service三、从package-lock.json获取.bin的软链接1. bin目录下的那些软连接存在于项目最外层的package-lock.json文件中。2.vue-cli-service文件的作用3.npm install 的作用 总结 一、去packag…