Linux 字符设备驱动结构(三)—— file、inode结构体及chardevs数组等相关知识解析

前面我们学习了字符设备结构体cdev Linux 字符设备驱动开发 (一)—— 字符设备驱动结构(上)  下面继续学习字符设备另外几个重要的数据结构。

       先看下面这张图,这是Linux 中虚拟文件系统、一般的设备文件与设备驱动程序值间的函数调用关系;



        上面这张图展现了一个应用程序调用字符设备驱动的过程, 在设备驱动程序的设计中,一般而言,会关心 file 和 inode 这两个结构体

        用户空间使用 open() 函数打开一个字符设备 fd = open("/dev/hello",O_RDWR) , 这一函数会调用两个数据结构struct inode{...}struct file{...} ,二者均在虚拟文件系统VFS处,下面对两个数据结构进行解析:


一、file 文件结构体

       在设备驱动中,这也是个非常重要的数据结构,必须要注意一点,这里的file与用户空间程序中的FILE指针是不同的,用户空间FILE是定义在C库中,从来不会出现在内核中。而struct file,却是内核当中的数据结构,因此,它也不会出现在用户层程序中。

       file结构体指示一个已经打开的文件(设备对应于设备文件),其实系统中的每个打开的文件在内核空间都有一个相应的struct file结构体,它由内核在打开文件时创建,并传递给在文件上进行操作的任何函数,直至文件被关闭。如果文件被关闭,内核就会释放相应的数据结构。

     在内核源码中,struct file要么表示为file,或者为filp(意指“file pointer”), 注意区分一点,file指的是struct file本身,而filp是指向这个结构体的指针。

下面是几个重要成员:

a -- fmode_t f_mode;

      此文件模式通过FMODE_READ, FMODE_WRITE识别了文件为可读的,可写的,或者是二者。在open或ioctl函数中可能需要检查此域以确认文件的读/写权限,你不必直接去检测读或写权限,因为在进行octl等操作时内核本身就需要对其权限进行检测。

 b -- loff_t f_pos;

     当前读写文件的位置。为64位。如果想知道当前文件当前位置在哪,驱动可以读取这个值而不会改变其位置。对read,write来说,当其接收到一个loff_t型指针作为其最后一个参数时,他们的读写操作便作更新文件的位置,而不需要直接执行filp ->f_pos操作。而llseek方法的目的就是用于改变文件的位置。

c -- unsigned int f_flags;

     文件标志,如O_RDONLY, O_NONBLOCK以及O_SYNC。在驱动中还可以检查O_NONBLOCK标志查看是否有非阻塞请求。其它的标志较少使用。特别地注意的是,读写权限的检查是使用f_mode而不是f_flog。所有的标量定义在头文件中

d -- struct file_operations *f_op;

    与文件相关的各种操作。当文件需要迅速进行各种操作时,内核分配这个指针作为它实现文件打开,读,写等功能的一部分。filp->f_op 其值从未被内核保存作为下次的引用,即你可以改变与文件相关的各种操作,这种方式效率非常高。

    file_operation 结构体解析如下:Linux 字符设备驱动结构(四)—— file_operations 结构体知识解析

e -- void *private_data;

      在驱动调用open方法之前,open系统调用设置此指针为NULL值。你可以很自由的将其做为你自己需要的一些数据域或者不管它,如,你可以将其指向一个分配好的数据,但是你必须记得在file struct被内核销毁之前在release方法中释放这些数据的内存空间。private_data用于在系统调用期间保存各种状态信息是非常有用的。



二、 inode结构体

         VFS inode 包含文件访问权限、属主、组、大小、生成时间、访问时间、最后修改时间等信息。它是Linux 管理文件系统的最基本单位,也是文件系统连接任何子目录、文件的桥梁。

        内核使用inode结构体在内核内部表示一个文件。因此,它与表示一个已经打开的文件描述符的结构体(即file 文件结构)是不同的,我们可以使用多个file 文件结构表示同一个文件的多个文件描述符,但此时,所有的这些file文件结构全部都必须只能指向一个inode结构体

      inode结构体包含了一大堆文件相关的信息,但是就针对驱动代码来说,我们只要关心其中的两个域即可:

(1) dev_t i_rdev;

      表示设备文件的结点,这个域实际上包含了设备号

(2) struct cdev *i_cdev;

      struct cdev是内核的一个内部结构,它是用来表示字符设备的,当inode结点指向一个字符设备文件时,此域为一个指向inode结构的指针。

下面是源代码:

[cpp] view plaincopy
在CODE上查看代码片派生到我的代码片
  1. struct inode {  
  2.  struct hlist_node i_hash;  
  3.  struct list_head i_list;  
  4.  struct list_head i_sb_list;  
  5.  struct list_head i_dentry;  
  6.  unsigned long  i_ino;  
  7.  atomic_t  i_count;  
  8.  unsigned int  i_nlink;  
  9.  uid_t   i_uid;//inode拥有者id  
  10.  gid_t   i_gid;//inode所属群组id  
  11.  dev_t   i_rdev;//若是设备文件,表示记录设备的设备号  
  12.  u64   i_version;  
  13.  loff_t   i_size;//inode所代表大少  
  14. #ifdef __NEED_I_SIZE_ORDERED  
  15.  seqcount_t  i_size_seqcount;  
  16. #endif  
  17.  struct timespec  i_atime;//inode最近一次的存取时间  
  18.  struct timespec  i_mtime;//inode最近一次修改时间  
  19.  struct timespec  i_ctime;//inode的生成时间  
  20.  unsigned int  i_blkbits;  
  21.  blkcnt_t  i_blocks;  
  22.  unsigned short          i_bytes;  
  23.  umode_t   i_mode;  
  24.  spinlock_t  i_lock;   
  25.  struct mutex  i_mutex;  
  26.  struct rw_semaphore i_alloc_sem;  
  27.  const struct inode_operations *i_op;  
  28.  const struct file_operations *i_fop;   
  29.  struct super_block *i_sb;  
  30.  struct file_lock *i_flock;  
  31.  struct address_space *i_mapping;  
  32.  struct address_space i_data;  
  33. #ifdef CONFIG_QUOTA  
  34.  struct dquot  *i_dquot[MAXQUOTAS];  
  35. #endif  
  36.  struct list_head i_devices;  
  37.  union {  
  38.   struct pipe_inode_info *i_pipe;  
  39.   struct block_device *i_bdev;  
  40.   struct cdev  *i_cdev;//若是字符设备,对应的为cdev结构体  
  41.  };  


三、chardevs 数组

     从图中可以看出,通过数据结构 struct inode{...} 中的 i_cdev 成员可以找到cdev,而所有的字符设备都在 chrdevs 数组中

下面先看一下 chrdevs 的定义:

[cpp] view plaincopy
在CODE上查看代码片派生到我的代码片
  1. #define CHRDEV_MAJOR_HASH_SIZE 255  
  2. static DEFINE_MUTEX(chrdevs_lock);  
  3.   
  4. static struct char_device_struct {  
  5.     struct char_device_struct *next; // 结构体指针  
  6.     unsigned int major;              // 主设备号  
  7.     unsigned int baseminor;          // 次设备起始号  
  8.     int minorct;                     // 次备号个数  
  9.     char name[64];  
  10.     struct cdev *cdev; /* will die */  
  11. } *chrdevs[CHRDEV_MAJOR_HASH_SIZE];      // 只能挂255个字符主设备<span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);">  </span>  

       可以看到全局数组 chrdevs 包含了255(CHRDEV_MAJOR_HASH_SIZE 的值)个 struct char_device_struct的元素,每一个对应一个相应的主设备号。

       如果分配了一个设备号,就会创建一个 struct char_device_struct 的对象,并将其添加到 chrdevs 中;这样,通过chrdevs数组,我们就可以知道分配了哪些设备号。


相关函数,(这些函数在上篇已经介绍过,现在回顾一下:

  register_chrdev_region( ) 分配指定的设备号范围

  alloc_chrdev_region( ) 动态分配设备范围

他们都主要是通过调用函数 __register_chrdev_region() 来实现的;要注意,这两个函数仅仅是注册设备号!如果要和cdev关联起来,还要调用cdev_add()。

  register_chrdev( )申请指定的设备号,并且将其注册到字符设备驱动模型中.

  它所做的事情为:

a -- 注册设备号, 通过调用 __register_chrdev_region() 来实现

b -- 分配一个cdev, 通过调用 cdev_alloc() 来实现

c -- 将cdev添加到驱动模型中, 这一步将设备号和驱动关联了起来. 通过调用 cdev_add() 来实现

d -- 将第一步中创建的 struct char_device_struct 对象的 cdev 指向第二步中分配的cdev. 由于register_chrdev()是老的接口,这一步在新的接口中并不需要。


四、cdev 结构体

        在 Linux 字符设备驱动开发 (一)—— 字符设备驱动结构(上) 有解析。


五、文件系统中对字符设备文件的访问

        下面看一下上层应用open() 调用系统调用函数的过程

        对于一个字符设备文件, 其inode->i_cdev 指向字符驱动对象cdev, 如果i_cdev为 NULL ,则说明该设备文件没有被打开.

  由于多个设备可以共用同一个驱动程序.所以,通过字符设备的inode 中的i_devices 和 cdev中的list组成一个链表


        首先,系统调用open打开一个字符设备的时候, 通过一系列调用,最终会执行到 chrdev_open

  (最终是通过调用到def_chr_fops中的.open, 而def_chr_fops.open = chrdev_open. 这一系列的调用过程,本文暂不讨论)

  int chrdev_open(struct inode * inode, struct file * filp)

chrdev_open()所做的事情可以概括如下:

  1. 根据设备号(inode->i_rdev), 在字符设备驱动模型中查找对应的驱动程序, 这通过kobj_lookup() 来实现, kobj_lookup()会返回对应驱动程序cdev的kobject.

  2. 设置inode->i_cdev , 指向找到的cdev.

  3. 将inode添加到cdev->list 的链表中.

  4. 使用cdev的ops 设置file对象的f_op

  5. 如果ops中定义了open方法,则调用该open方法

  6. 返回

执行完 chrdev_open()之后,file对象的f_op指向cdev的ops,因而之后对设备进行的read, write等操作,就会执行cdev的相应操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/402124.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python的gevent协程及协程概念

https://www.cnblogs.com/tkqasn/p/5705338.html 何为协程 协程&#xff0c;又称微线程。英文名Coroutine。 协程最大的优势就是协程极高的执行效率。因为子程序切换不是线程切换&#xff0c;而是由程序自身控制&#xff0c;因此&#xff0c;没有线程切换的开销&#xff0c;…

技术人生:三亚之行

人生收获 此次是公司组团去的三亚&#xff0c;地接的导游非常热情&#xff0c;如同大多数人一样&#xff0c;导游也会在这短短的几天内&#xff0c;尽可能的表现自己&#xff0c;此文聊聊导游说的三句话。 旅游三不“较”&#xff1a; 不比较不计较不睡觉人生何尝不是如此&…

Linux 字符设备驱动结构(二)—— 自动创建设备节点

上一篇我们介绍到创建设备文件的方法&#xff0c;利用cat /proc/devices查看申请到的设备名&#xff0c;设备号。 第一种是使用mknod手工创建&#xff1a;mknod filename type major minor 第二种是自动创建设备节点&#xff1a;利用udev&#xff08;mdev&#xff09;来实现设备…

Python数据库使用-SQLite

https://www.liaoxuefeng.com/wiki/897692888725344/926177394024864 SQLite是一种嵌入式数据库&#xff0c;它的数据库就是一个文件。由于SQLite本身是C写的&#xff0c;而且体积很小&#xff0c;所以&#xff0c;经常被集成到各种应用程序中&#xff0c;甚至在iOS和Android的…

Linux 字符设备驱动结构(一)—— cdev 结构体、设备号相关知识解析

一、字符设备基础知识 1、设备驱动分类 linux系统将设备分为3类&#xff1a;字符设备、块设备、网络设备。使用驱动程序&#xff1a; 字符设备&#xff1a;是指只能一个字节一个字节读写的设备&#xff0c;不能随机读取设备内存中的某一数据&#xff0c;读取数据需要按照先后数…

Python数据库使用MySQL

https://www.liaoxuefeng.com/wiki/897692888725344/932709047411488 MySQL是Web世界中使用最广泛的数据库服务器。SQLite的特点是轻量级、可嵌入&#xff0c;但不能承受高并发访问&#xff0c;适合桌面和移动应用。而MySQL是为服务器端设计的数据库&#xff0c;能承受高并发访…

Linux 驱动开发之内核模块开发(四)—— 符号表的导出

Linux内核头文件提供了一个方便的方法用来管理符号的对模块外部的可见性,因此减少了命名空间的污染(命名空间的名称可能会与内核其他地方定义的名称冲突),并且适当信息隐藏。 如果你的模块需要输出符号给其他模块使用,应当使用下面的宏定义: EXPORT_SYMBOL(name); EXPORT_SYMBO…

Python的time模块和datatime模块

https://www.cnblogs.com/tkqasn/p/6001134.html

Linux 驱动开发之内核模块开发 (三)—— 模块传参

一、module_param() 定义 通常在用户态下编程&#xff0c;即应用程序&#xff0c;可以通过main()的来传递命令行参数&#xff0c;而编写一个内核模块&#xff0c;则通过module_param() 来传参。 module_param()宏是Linux 2.6内核中新增的&#xff0c;该宏被定义在include/linux…

Linux 驱动开发之内核模块开发 (二)—— 内核模块编译 Makefile 入门

一、模块的编译 我们在前面内核编译中驱动移植那块&#xff0c;讲到驱动编译分为静态编译和动态编译&#xff1b;静态编译即为将驱动直接编译进内核&#xff0c;动态编译即为将驱动编译成模块。 而动态编译又分为两种&#xff1a; a -- 内部编译 在内核源码目录内编译 b -- 外部…

Exynos4412 文件系统制作(三)—— 文件系统移植

根文件系统一直以来都是所有类Unix操作系统的一个重要组成部分&#xff0c;也可以认为是嵌入式Linux系统区别于其他一些传统嵌入式操作系统的重要特征&#xff0c;它给Linux带来了许多强大和灵活的功能&#xff0c;同时也带来了一些复杂性。我们需要清楚的了解根文件系统的基本…

Snapchat, 给年轻人要的安全感

这几天&#xff0c;Snapchat因拒绝Facebook和谷歌的收购请求而名声大噪。40亿美金的收购请求&#xff0c;并不是任何一个人都可以淡然处之的。一、关于SnapchatSnapchat由两位斯坦福大学生创办&#xff0c;在2011 年9月上线。Snapchat的主要是所有照片都有一个1到10秒的生命期&…

Exynos4412 文件系统制作(二)—— 文件系统简介

一、Linux磁盘分区和目录 Linux发行版本之间的差别很少&#xff0c;差别主要表现在系统管理的特色工具以及软件包管理方式的不同。目录结构基本上都是一样的。 Windows的文件结构是多个并列的树状结构&#xff0c;最顶部的是不同的磁盘&#xff08;分区&#xff09;&#xff0c…

python的urllib2模块

https://www.cnblogs.com/erliang/p/4063883.html https://blog.csdn.net/u014343243/article/details/49308043 https://docs.python.org/zh-cn/2.7/library/urllib2.html

Python中的yield

《python中yield的用法详解——最简单&#xff0c;最清晰的解释》 https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ https://www.runoob.com/w3cnote/python-yield-used-analysis.html

Exynos4412 内核移植(七)—— 内核相关知识补充

一、内核调试方法简单分析 1、addr2line: 解决oops错误 a -- oops消息 oops&#xff08;也称 panic&#xff09;&#xff0c;称程序运行崩溃&#xff0c;程序崩溃后会产生oops消息。应用程序或内核线程的崩溃都会产生oops消息&#xff0c;通常发生oops时&#xff0c;系统不会发…

MM引擎新应用——爱车加油记

基于MM应用引擎开发的EXTJS应用&#xff0c;车主每次加完汽油后&#xff0c;记录加油时的里程数以及加油金额和汽油价格&#xff0c;就可计算出上次加油后行驶的里程数、上次加油的平均油耗。点击刷新按钮&#xff0c;即可计算有记录以来的行驶公里数和再次期间加油金额和平均油…

Python风格

Python3学习之Python风格指南 PEP8 – Python代码样式指南&#xff08;中文版&#xff09;

### 阅读之痕-2013/11

2019独角兽企业重金招聘Python工程师标准>>> 阅读之痕-2013/11 Andy erpingwugmail.com 2013/11/01-2013/11/30 2013/11/01-2013/11/30 The story of rocksdb - Embedded key-value store for Flash and RAM http://rocksdb.org/intro.pdf High Performance Network…