协作机器人 ai算法_如果我们希望人工智能为我们服务而不是不利于我们,我们需要协作设计...

协作机器人 ai算法

by Mariya Yao

姚iya(Mariya Yao)

如果我们希望人工智能为我们服务而不是不利于我们,我们需要协作设计 (If we want AI to work for us — not against us — we need collaborative design)

The trope “there’s an app for that” is becoming “there’s an AI for that.”

有人说“有一个应用程序”变成了“有一个AI的应用程序”。

Want to assess the narrative quality of a story? Disney’s got an AI for that.

想评估一个故事的叙事质量吗? 迪士尼为此拥有了AI 。

Got a shortage of doctors but still need to treat patients? IBM Watson prescribes the same treatment plan as human physicians 99% of the time.

缺少医生但仍然需要治疗患者? IBM Watson规定99%的时间与人类医师制定相同的治疗计划。

Tired of waiting for George R.R. Martin to finish writing Game of Thrones? Rest easy, because a neural network has done the hard work for him.

厌倦了等待乔治·RR·马丁完成《权力的游戏》的写作? 别紧张,因为神经网络为他做了辛苦的工作 。

But is all this rapid-fire progress good for humanity? Elon Musk, our favorite AI alarmist, recently took down Mark Zuckerberg’s positive outlook on AI. He dismissed the latter’s views as “limited”.

但是,所有这些快速发动的进步对人类都有好处吗? 我们最喜欢的AI预警员Elon Musk最近拒绝了 Mark Zuckerberg对AI的乐观看法。 他认为后者的观点“有限”。

Whether you’re in Camp Zuck of “AI is awesome” or in Camp Musk of “AI will doom us all”, one fact is clear. With AI touching all aspects of our lives, intelligent technology needs deliberate design to reflect and serve human needs and values.

无论您是在“人工智能真棒”的扎克营地,还是在“人工智能必将毁灭我们所有人”的马斯克营地中,一个事实都显而易见。 随着AI触及我们生活的方方面面,智能技术需要进行精心设计,以反映并服务于人类的需求和价值。

偏差的AI会带来意想不到的严重后果 (Biased AI has unexpected and severe consequences)

Software applications used by U.S. government agencies for crime litigation and prevention algorithmically generate information that influence human decisions about sentencing, bail, and parole. Some of these programs have been found to erroneously attribute a much higher likelihood of committing further criminal activity to black defendants. The same algorithms also err in attributing much lower risk assessment scores to white defendants.

美国政府机构用于犯罪诉讼和预防的软件应用程序通过算法生成的信息会影响人对量刑,保释和假释的决定。 已经发现其中一些程序错误地将更多的犯罪活动归咎于黑人被告。 同样的算法也会给白人被告人带来低得多的风险评估分数。

According to a study from Carnegie Mellon University, Google served targeted ads for getting high-paying jobs (those that pay more than $200,000) much more often to men (1,800 times) than women (just a paltry 300).

根据卡内基梅隆大学的一项研究 ,谷歌投放针对性广告,以获取高薪工作(薪水超过200,000美元),而男性(1800倍)要比女性(微不足道的300人)多得多。

It is unclear if the discrepancy is the result of advertisers’ preferences. Or if it is an inadvertent outcome of machine learning (ML) algorithms behind the ad recommendation engine. The outcome is that a professional landscape that already demonstrates preferential treatment for one gender over another is being reinforced at scale with technology.

目前尚不清楚差异是否是广告客户偏好的结果。 或者,如果这是广告推荐引擎背后的机器学习(ML)算法的意外结果。 结果是,已经通过技术大规模增强了一种职业格局,这种格局已经证明一种性别优先于另一种性别。

In the field of healthcare, AI systems are at risk of producing unreliable insights even if algorithms were perfectly implemented. Underlying healthcare data is driven by social inequalities. Poorer communities lack access to digital healthcare. This leaves a gaping hole in the trove of medical information that AI systems feed to algorithms. Randomized control trials often exclude groups such as pregnant women, the elderly, or those suffering from other medical complications.

在医疗保健领域,即使算法得到了完美的实施,人工智能系统也有产生不可靠洞察力的风险。 基础医疗保健数据是由社会不平等驱动的。 贫困社区无法获得数字医疗服务。 这在AI系统提供给算法的医学信息中留下了一个空白。 随机对照试验通常将孕妇,老年人或患有其他医疗并发症的人群排除在外 。

A Princeton University study demonstrated that ML systems inherit human biases found in English language texts. Since language is a reflection of culture and society, our everyday biases get picked up in the mathematical models behind natural language processing (NLP) tasks. Failing to carefully review and de-bias such models has real-world consequences. Google’s Perspective API is intended to analyze online conversations and flag “toxic” content. But it unintentionally flags non-white entities like names and food as being far more toxic than their white counterparts.

普林斯顿大学的一项研究表明 ,机器学习系统继承了英语文本中发现的人类偏见。 由于语言是文化和社会的反映,因此我们日常的偏见在自然语言处理(NLP)任务背后的数学模型中得到了体现。 未能仔细检查和消除此类模型的偏差会产生现实后果。 Google的Perspective API旨在分析在线对话并标记“有毒”内容。 但是它无意中将非白人实体(例如名称和食物) 标记为比白人具有更大的毒性。

Many gender, economic and racial biases in AI have been documented over the last few years.

在过去的几年中,已经记录了人工智能中的许多性别,经济和种族偏见。

With AI also becoming integral in the fields of security, defense and warfare, how do we design systems that don’t backfire?

随着AI在安全,防御和战争领域也变得不可或缺,我们如何设计不会适得其反的系统?

机制和宣言是一个开始…… (Mechanisms and manifestos are a start…)

AI systems can’t only succeed in completing their core tasks. They must do so without harming human society. Designing safe and ethical AI is a monumental challenge, but a critical one to tackle now.

人工智能系统不仅可以成功完成其核心任务。 他们必须在不损害人类社会的情况下这样做。 设计安全和符合道德的AI是一项艰巨的挑战,但现在却是一个至关重要的挑战。

In a joint study, Google DeepMind and The Future of Humanity Institute explored the possibility of AI going rogue. They recommended that AI be designed to have a ”big red button” that can be activated by a human operator to “prevent an AI agent from continuing a harmful sequence of actions.” In practical terms, this red button will be a trigger or a signal that will “trick” the machine to internally make a decision to stop, without recognizing it as a shutdown signal by an external agent.

在一项联合研究中 ,Google DeepMind和人类未来研究所探讨了AI流氓的可能性。 他们建议对AI进行设计,使其具有一个“红色大按钮”,操作员可以激活它,以“防止AI代理继续执行有害的操作序列。” 实际上,该红色按钮将是触发或信号,将“诱骗”机器内部做出停止决策,而不会被外部代理识别为停机信号。

Meanwhile, the world’s largest association of technical professionals Institute of Electrical and Electronics Engineers (IEEE) published its General Principles for Ethically Aligned Design. It covers all types of artificial intelligence and autonomous systems.

同时,全球最大的技术专业人士协会电气与电子工程师协会(IEEE)发布了其《道德统一设计通则》 。 它涵盖了所有类型的人工智能和自治系统。

The document sets a general standard for designers to ensure that AI and autonomous systems:

该文档为设计师设置了确保AI和自治系统的通用标准:

  1. do not infringe human rights

    不侵犯人权
  2. that they are transparent to a wide range of stakeholders

    他们对广泛的利益相关者透明
  3. that their benefits and associated risks can be extended or minimized

    他们的利益和相关风险可以扩展或最小化
  4. that accountability for their design and operation is clearly laid out

    明确规定了其设计和操作的责任制

…但是协作设计对于成功至关重要 (…but collaborative design is critical for success)

Hypothetical fail-safe mechanisms and hopeful manifestos are important. But they are insufficient to address the myriad of ways that AI systems can go wrong. Creations adopt the biases of their creators. Homogeneous development teams, insular thinking, and lack of perspective lie at the root of many of the challenges already manifesting in AI today.

假设的故障安全机制和有希望的宣言很重要。 但是它们不足以解决AI系统出错的各种方式。 创作采用创作者的偏见。 同类开发团队,孤立的思维和缺乏远见是当今AI中已经表现出的许多挑战的根源 。

Diversity and user-centered design in technology have never been so important. Luckily, as AI education and tooling becomes more accessible, designers and other domain experts are increasingly empowered to contribute to a field that was previously reserved for academics and a niche community of experts.

技术上的多样性和以用户为中心的设计从未如此重要。 幸运的是,随着AI教育和工具变得越来越容易获得 ,设计人员和其他领域专家越来越有能力为以前供学者和小众专家群体使用的领域做出贡献。

增强AI合作的三种方法 (Three approaches to enhance collaboration in AI)

方法#1:构建用户友好的产品以收集更好的AI数据 (Approach #1: Build user-friendly products to collect better data for AI)

Elaine Lee, an AI Designer at eBay emphasizes that human input and user generated data are critical for smarter AI. If the products collecting requisite data to power AI systems do not encourage positive engagement, then the data generated from user interactions tend to be incomplete, incorrect, or compromised. In Lee’s words, “We need to design experiences that incentivize engagement and improve AI.”

eBay的AI设计师Elaine Lee 强调 ,人工输入和用户生成的数据对于更智能的AI至关重要。 如果收集支持AI系统所需数据​​的产品不鼓励积极参与,那么通过用户交互生成的数据往往不完整,不正确或受到破坏。 用Lee的话来说,“我们需要设计能够激发参与度并改善AI的体验。”

Google Design’s Jess Holbrook recommends a 7-step approach to designing human-centered ML systems. He cautions against relying on algorithms to tell you what problems to solve. Instead he encourages designers to build systems that enable “co-learning and adaptation” between man and machine as technologies evolve. Holbrook also points out that many legitimate problems do not need ML to be successfully solved.

Google Design的Jess Holbrook建议采用7步方法来设计以人为中心的ML系统。 他告诫不要依靠算法告诉您要解决的问题。 取而代之的是,他鼓励设计师构建能够随着技术的发展在人机之间实现“共同学习和适应”的系统。 霍尔布鲁克还指出,许多合法问题并不需要成功解决ML。

Collaborating with users seems like a common sense procedure. But few companies go beyond cursory user research and passive behavioral data collection. The next step is to enable a productive, long-term feedback loop so that users of AI systems actively define the functionality and vision of your technology,. Yet also perform important tasks like flagging and minimizing biases.

与用户合作似乎是一个常识性过程。 但是,很少有公司能进行粗略的用户研究和被动行为数据收集。 下一步是启用有效的长期反馈循环,以便AI系统的用户积极定义技术的功能和愿景。 还要执行重要任务,例如标记和最小化偏差。

方法2:将领域专业知识和业务价值置于算法之上 (Approach: #2: Prioritize domain expertise and business value over algorithms)

Michael Schrage, research fellow at MIT Sloan, argues that “strategically speaking, a brilliant data-driven algorithm typically matters less than thoughtful UX design. Thoughtful UX designs can better train machine learning systems to become even smarter.

麻省理工学院斯隆分校的研究员迈克尔·施拉格(Michael Schrage) 认为 :“从策略上讲,出色的数据驱动算法通常比考虑周到的用户体验设计重要。 周到的UX设计可以更好地训练机器学习系统,使其变得更加智能。

“In order to develop “thoughtful UX”, you need domain expertise and business value. A common pattern in both academia and industry engineering teams is the propensity to optimize for tactical wins over strategic initiatives. While brilliant minds worry about achieving marginal improvements in competition benchmarks, the nitty gritty issues of productizing and operationalizing AI for real-world use cases is often ignored. Who cares if you can solve a problem with 99% accuracy, if no one needs that problem solved? Or your tool is so arcane, no one is sure what problem it’s trying to solve in the first place?

“为了开发“周到的UX”,您需要领域专业知识和业务价值。 学术界和工业工程团队中的一个常见模式是倾向于优化战胜战略计划的战术。 聪明的人担心要在竞争基准上实现微不足道的改进,而针对实际用例的AI生产和操作AI的棘手问题却常常被忽略。 谁在乎您是否可以以99%的精度解决问题,如果没有人需要解决该问题? 还是您的工具太神秘了,没有人确定它首先要解决的问题是什么?

“In working with Fortune 500 enterprises looking to re-invent their workflows with automation and AI, a complaint I commonly hear about promising AI startups is this: “These guys seem really smart and their product has a lot of bells and whistles. But they don’t understand my business.”

“在与《财富》 500强企业合作,希望通过自动化和AI重新改造其工作流程时,我通常听到关于有前途的AI初创公司的抱怨是:“这些家伙看起来真的很聪明,他们的产品充满了风吹草动。 但是他们不了解我的生意。”

方法3:赋予人类设计师机器智能 (Approach #3: Empower human designers with machine intelligence)

Designing AI is yet another challenge where human and machine can combine forces for superior results. Software developer, author and inventor Patrick Hebron demonstrates that machine learning can be used to simplify design tools without limiting creativity or removing control from human designers.

设计AI是另一个挑战,人与机器可以结合力量以获得卓越的结果。 软件开发人员,作家兼发明家Patrick Hebron 证明了机器学习可用于简化设计工具,而不会限制创造力或消除人类设计师的控制权。

Hebron describes several ways ML can transform how people interact with design tools. These include emergent feature sets, design through exploration, design by description, process organization, and conversational interfaces. He believes these approaches can streamline the design process and enable human designers to focus on the creative and imaginative side of the process instead of the technical aspects (i.e., how to use a particular design software). This way, “designers will lead the tool, not the other way around.”

Hebron描述了ML可以改变人们与设计工具交互方式的几种方式。 其中包括紧急功能集,通过探索进行设计,通过描述进行设计,过程组织以及对话界面。 他认为,这些方法可以简化设计过程,并使人类设计师能够专注于过程的创造性和富于想象力的方面,而不是技术方面(即,如何使用特定的设计软件)。 这样,“设计人员将主导工具,而不是相反。”

Designing AI is yet another challenge where human and machine can combine forces for superior results. Software developer, author and inventor Patrick Hebron demonstrates that machine learning can be used to simplify design tools without limiting creativity or removing control from human designers.

设计AI是另一个挑战,人与机器可以结合力量以获得卓越的结果。 软件开发人员,作家和发明家Patrick Hebron 证明了机器学习可用于简化设计工具,而不会限制创造力或消除人类设计师的控制权。

Hebron describes several ways ML can transform how people interact with design tools. These include emergent feature sets, design through exploration, design by description, process organization, and conversational interfaces. He believes these approaches can streamline the design process, and enable human designers to focus on the creative and imaginative side of the process instead of the technical aspects such as how to use a particular design software. This way, “designers will lead the tool, not the other way around.”

Hebron描述了ML可以改变人们与设计工具交互方式的几种方式。 其中包括紧急功能集,通过探索进行设计,通过描述进行设计,过程组织以及对话界面。 他认为,这些方法可以简化设计过程,并使人类设计师能够专注于过程的创造性和富于想象力的方面,而不是技术方面,例如如何使用特定的设计软件。 这样,“设计师将主导工具,而不是相反。”

The field of “AI Design” is nascent. We are still figuring out which best practices we should preserve and what new ones we need to invented. But many promising AI-driven creative tools already exist. Greater access to tools and education mean that experts from all fields and functions can help evolve a field that is traditionally driven by an elite few. With AI’s exponential impact on all aspects of our lives, this collaboration will be essential to developing technology that works for everyone, everyday.

“ AI设计”领域是新生的。 我们仍在确定应该保留哪些最佳实践以及需要发明哪些新的最佳实践。 但是已经存在许多有前途的AI驱动的创意工具。 获得更多工具和教育的机会意味着来自各个领域和职能部门的专家可以帮助发展传统上由少数精英推动的领域。 随着AI对我们生活各个方面的指数影响,这种合作对于开发适用于每一个人的技术至关重要。

Thanks for reading. You can read more of my writing on AI by following me here and checking out the TOPBOTS blog.

谢谢阅读。 您可以在这里关注我并查看TOPBOTS博客 ,以关于AI的文章 。

翻译自: https://www.freecodecamp.org/news/if-we-want-ai-to-work-for-us-and-not-against-us-we-need-collaborative-design-a627175e5d60/

协作机器人 ai算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/395561.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Shadow Brokers 公布 2.1 万美元的 0day 订阅服务

神秘黑客组织 Shadow Brokers 宣布将向支付 2.1 万美元 0day 订阅服务的个人公布最新一批的 NSA 工具,这一声明给全世界的白帽子黑客或安全研究人员造成了一场伦理危机。 一方面,Shadow Brokers 此前释出过创造出勒索软件 WannaCry 的 NSA 工具&#xff…

linux awk 常见字符串处理

awk指定输出列: awk {print $0} file #打印所有列awk {print $1} file #打印第一列 awk {print $1, $3} file #打印第一和第三列 cat file | awk {print $3, $1} #打印第三列和第一列,注意先后顺序。 cat file | awk {print $3, $NF} #打印第三列…

oracle ldap 配置,ldap 安装

一、安装步骤1:配置yum源挂着盘镜像时用到: 这里不做解释;(yum clean all && yum makecache)2:安装OpenLDAP组件1)安装OpenLDAP组件命令如下:[rootgitea ~]# yum install openldap openldap-servers openldap-clients openldap-devel compat-openldap -ycom…

scp跨主机拷贝工具

参考:http://www.cnblogs.com/hitwtx/archive/2011/11/16/2251254.html SSH上A机,要将10.1.17.95机/tpdata/shell_script/下面的crontab.tar.gz文件拷贝到A机的当前文件夹下面: scp weblogic10.1.17.95:/tpdata/shell_script/crontab.tar.gz …

Google Chrome浏览器可能在您不知情的情况下破坏了您的测试

by Robert Axelsen罗伯特阿克森(Robert Axelsen) Google Chrome浏览器可能在您不知情的情况下破坏了您的测试 (Google Chrome might have broken your tests without you even knowing about it) My colleague just discovered that Chrome 58 (released April 19th) has sile…

Java 9 将采用新的版本字符串格式

在现有的版本编码格式使用了两年之后,从Java 9开始,Java版本方案将根据业内软件版本编码的最佳实践进行修改。使用或解析Java版本字符串的应用程序开发人员要注意了,因为这种变化可以会影响他们的应用程序。 正如JEP 223所阐述的那样&#xf…

oracle 表更新表,Oracle 更新表(另一张表)

JUC学习笔记--Thread多线程基础实现多线程的两种方法 java 实现多线程通过两种方式1.继承Thread类 ,2.实现Runnable接口 class Newthead extends Thread{ public void ru ...SharePoint中新创建的Web Application在浏览器中报404错误问题描述:在安装完成SharePoint 2010后,进入…

jQuery(爱前端)

一 jQuery 简介 官网:www.jquery.com 口号:写更少的代码,做更多的事情 jQuery 是一个快速、小型的、特性很多的JS库,它把很多事儿都变得简单。jQuery是免费的、开源的。 jQuery 是 DOM 编程领域的霸主,极大的简化了原生…

跳过 centos部署 webpy的各种坑

用centos部署webpy发现的各种坑: 1、python 版本: 2、中文编码: 3、web模块路径: 在命令行里输入python,能import web,但是网站错误报告一直报告没有找到web模块,说明web模块路径有问题。python…

撰写本文的所有基本React.js概念

Update: This article is now part of my book “React.js Beyond The Basics”.更新:本文现在是我的书《超越基础的React.js》的一部分。 Read the updated version of this content and more about React at jscomplete.com/react-beyond-basics.在jscomplete.com…

CentOS 7 firewalld使用简介

2019独角兽企业重金招聘Python工程师标准>>> Centos升级到7之后,发现无法使用iptables控制Linuxs的端口,google之后发现Centos 7使用firewalld代替了原来的iptables。下面记录如何使用firewalld开放Linux端口: 1.快速使用说明 开启…

简述java语言的特点

简述java语言的特点: ① 简单的特性 ② 面向对象的特性 ③ 分布式处理的特性 ④ 健壮的特性 ⑤ 结构中立的特性 ⑥ 安全特性 ⑦ 可移植的特性 ⑧ 解释的特性 ⑨ 高性能的特性 ⑩ 多线程的特性 转载于:https://www.cnblogs.com/qq1335…

php函数嵌套 作用域,javascript 嵌套的函数(作用域链)_javascript技巧

嵌套的函数(作用域链)当你进行函数的嵌套时,要注意实际上作用域链是发生变化的,这点可能看起来不太直观。你可把下面的代码置入firebug监视值的变化。var testvar window属性;var o1 {testvar:1, fun:function(){alert(o1: this.testvaro1.fun();1o2.f…

【C#-枚举】枚举的使用

枚举是用户定义的整数类型。 namespace ConsoleApplication1 {/// <summary>/// 在枚举中使用一个整数值&#xff0c;来表示一天的阶段/// 如&#xff1a;TimeOfDay.Morning返回数字0/// </summary>class EnumExample{public enum TimeOfDay{Morning 0,Afternoon …

Elixir 初尝试 5 -- 遇见Actor

Actor模型的定义 wiki如是说 The actor model in computer science is a mathematical model of concurrent computation that treats "actors" as the universal primitives of concurrent computation. In response to a message that it receives, an actor can: …

创建外部快照_快照事件:现在如何仅通过拍照即可创建日历事件

创建外部快照by Arjun Krishna Babu通过Arjun Krishna Babu 快照事件&#xff1a;现在如何仅通过拍照即可创建日历事件 (Snap Event: How you can now create calendar events just by taking a picture) Google just published my first Android app, Snap Event, in their P…

一个备份sql server文件.bak还原成两个数据库

一直对这个概念很模糊&#xff0c;今天具体一点。 备份文件只要是正常的.bak文件就好。 数据库>还原数据库 直接填写还原之后的文件名就行。 用一份备份文件还原两个一样的库&#xff0c;只是名称不一样。 转载于:https://www.cnblogs.com/Ly426/p/10209825.html

linux服务器防病毒,Linux系统中你不需要防病毒?_服务器评论-中关村在线

误区4&#xff1a;Linux是无病毒。Linux的安全性这么好&#xff0c;这是否意味着Linux是无病毒吗&#xff1f;现实&#xff1a;Linux是非常安全&#xff0c;并不是没有针对Linux方面的病毒。有许多针对Linux的已知病毒。但是几乎所有的已知病毒对于Linux在本质上都是非破坏性的…

外置接口请求

1. 请求接口 /*** 请求接口** param url* param paramsStr* param type Connection.Method.POST* param heads* return*/ public JSONObject sendUpload(String url, String paramsStr, Connection.Method type, Map<String, String> heads) {//发送上传订单请求Str…

python面向对象-1方法、构造函数

类是指&#xff1a;描述一种事物的定义&#xff0c;是个抽象的概念 实例指&#xff1a;该种事物的一个具体的个体&#xff0c;是具体的东西 打个比方&#xff1a; “人”是一个类。“张三”是人类的一个具体例子 在编程时也是同样的道理&#xff0c;你先自己定义一个“类”&am…