mysql 时间推移_随着时间的推移可视化COVID-19新案例

mysql 时间推移

This heat map shows the progression of the COVID-19 pandemic in the United States over time. The map is read from left to right, and color coded to show the relative numbers of new cases by state, adjusted for population.

该热图显示了美国COVID-19大流行随着时间的进展。 从左到右读取地图,并用颜色编码显示按州调整的新病例的相对数量,并根据人口进行调整。

This visualization was inspired by a similar heat map that I saw on a discussion forum thread. I could never locate the source, as it was only a pasted image with no link. The original version was also crafted to make a political point, separating states by predominate party affiliation, which I was not as interested in. I was fascinated by how it concisely showed the progression of the pandemic, so I decided to create a similar visualization myself that I could update regularly.

这种可视化的灵感来自我在讨论论坛主题中看到的类似热图。 我永远找不到源,因为它只是一个粘贴的图像,没有链接。 最初的版本还经过精心设计以提出政治观点,以政党之间的支配关系分隔国家,对此我并不感兴趣。我可以定期更新。

Source code is hosted on my Github repo. If you are just interested in seeing updated versions of this heat map, I publish them weekly on my Twitter feed. It’s important to note that you should be careful comparing graphs from one week to another to each other, as the color map may change as new data is included. Comparisons are only valid within a given heatmap.

源代码托管在我的Github存储库中 。 如果您只想查看此热图的更新版本,我每周都会在Twitter feed上发布它们。 重要的是要注意,您应该谨慎比较一周之间的图表,因为随着添加新数据,颜色图可能会发生变化。 比较仅在给定的热图中有效。

The script relies on pandas, numpy, matplotlib, and seaborn.

该脚本依赖于pandas,numpy,matplotlib和seaborn。

The data comes from the New York Times COVID-19 Github repo. A simple launcher script clones the latest copy of the repository and copies the required file, and then launches the Python script to create the heat map. Only one file is really needed, so it could certainly be tightened up, but this works.

数据来自《纽约时报》 COVID-19 Github存储库 。 一个简单的启动器脚本将克隆存储库的最新副本并复制所需的文件,然后启动Python脚本以创建热图。 确实只需要一个文件,因此可以将其收紧,但这是可行的。

echo "Clearing old data..."
rm -rf covid-19-data/
rm us-states.csv
echo "Getting new data..."
git clone https://github.com/nytimes/covid-19-data
echo "Done."cp covid-19-data/us-states.csv .
echo "Starting..."python3 heatmap-newcases.py
echo "Done."

The script first loads a CSV file containing the state populations into a dictionary, which is used to scale daily new case results. The new cases are computed for each day from the running total in the NY Times data, and then scaled to new cases per 100,000 people in the population.

该脚本首先将包含州人口的CSV文件加载到字典中,该字典用于扩展每日新个案结果。 根据《纽约时报》数据中的运行总计每天计算新病例,然后将其扩展为人口中每100,000人的新病例 。

We could display the heat map at that point, but if we do, states with very high numbers of cases per 100,000 people will swamp the detail of the states with lower numbers of cases. Applying a log(x+1) transform improves contrast and readability significantly.

我们可以在那时显示热图,但是如果这样做,每10万人中案件数量非常多的州将淹没案件数量较少的州的详细信息。 应用log(x + 1)变换可显着提高对比度和可读性。

Finally, Seaborn and Matplotlib are used to generate the heatmap and save it to an image file.

最后,使用Seaborn和Matplotlib生成热图并将其保存到图像文件中。

That’s it! Feel free to use this as a framework for your own visualization. You can customize it to zero in on areas of interest.

而已! 随意使用它作为您自己的可视化框架。 您可以在感兴趣的区域将其自定义为零。

Full source code is below. Thanks for reading, and I hope you found it useful.

完整的源代码如下。 感谢您的阅读,希望您觉得它有用。

import numpy as np
import seaborn as sns
import matplotlib.pylab as plt
import pandas as pd
import csv
import datetimereader = csv.reader(open('StatePopulations.csv'))statePopulations = {}
for row in reader:key = row[0]if key in statePopulations:passstatePopulations[key] = row[1:]filename = "us-states.csv"
fullTable = pd.read_csv(filename)
fullTable = fullTable.drop(['fips'], axis=1)
fullTable = fullTable.drop(['deaths'], axis=1)# generate a list of the dates in the table
dates = fullTable['date'].unique().tolist()
states = fullTable['state'].unique().tolist()result = pd.DataFrame()
result['date'] = fullTable['date']states.remove('Northern Mariana Islands')
states.remove('Puerto Rico')
states.remove('Virgin Islands')
states.remove('Guam')states.sort()for state in states:# create new dataframe with only the current state's datepopulation = int(statePopulations[state][0])print(state + ": " + str(population))stateData = fullTable[fullTable.state.eq(state)]newColumnName = statestateData[newColumnName] = stateData.cases.diff()stateData[newColumnName] = stateData[newColumnName].replace(np.nan, 0)stateData = stateData.drop(['state'], axis=1)stateData = stateData.drop(['cases'], axis=1)stateData[newColumnName] = stateData[newColumnName].div(population)stateData[newColumnName] = stateData[newColumnName].mul(100000.0)result = pd.merge(result, stateData, how='left', on='date')result = result.drop_duplicates()
result = result.fillna(0)for state in states:result[state] = result[state].add(1.0)result[state] = np.log10(result[state])#result[state] = np.sqrt(result[state])result['date'] = pd.to_datetime(result['date'])
result = result[result['date'] >= '2020-02-15']
result['date'] = result['date'].dt.strftime('%Y-%m-%d')result.set_index('date', inplace=True)
result.to_csv("result.csv")
result = result.transpose()plt.figure(figsize=(16, 10))
g = sns.heatmap(result, cmap="coolwarm", linewidth=0.05, linecolor='lightgrey')
plt.xlabel('')
plt.ylabel('')plt.title("Daily New Covid-19 Cases Per 100k Of Population", fontsize=20)updateText = "Updated " + str(datetime.date.today()) + \". Scaled with Log(x+1) for improved contrast due to wide range of values. Data source: NY Times Github. Visualization by @JRBowling"plt.suptitle(updateText, fontsize=8)plt.yticks(np.arange(.5, 51.5, 1.0), states)plt.yticks(fontsize=8)
plt.xticks(fontsize=8)
g.set_xticklabels(g.get_xticklabels(), rotation=90)
g.set_yticklabels(g.get_yticklabels(), rotation=0)
plt.savefig("covidNewCasesper100K.png")

翻译自: https://towardsdatascience.com/visualization-of-covid-19-new-cases-over-time-in-python-8c6ac4620c88

mysql 时间推移

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/392250.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode 959. 由斜杠划分区域(并查集)

在由 1 x 1 方格组成的 N x N 网格 grid 中,每个 1 x 1 方块由 /、\ 或空格构成。这些字符会将方块划分为一些共边的区域。 (请注意,反斜杠字符是转义的,因此 \ 用 “\” 表示。)。 返回区域的数目。 示例 1&#x…

rcu宽限期_如何处理宽限期错误:静默失败不是一种选择

rcu宽限期by Rina Artstain通过丽娜阿斯特斯坦 I’ve never really had much of an opinion about error handling. This may come as a shock to people who know me as quite opinionated (in a good way!), but yeah. If I was coming into an existing code base I just d…

描述符、迭代器、生成器

描述符:将某种特殊类型的类的实例指派给另一个类的属性。 此处特殊类型的要求,至少实现”__set__(self , instance , owner)“、”__get__(self , instance , value)“、”__delete__(self , instance )“三个方法中的一个。 >>> class MyDecri…

php模拟表单提交登录,PHP模拟表单的post请求实现登录

stuid > $stuid,pwd > $pwd);$ch curl_init (); //初始化curlcurl_setopt ( $ch, CURLOPT_URL, $uri );curl_setopt ( $ch, CURLOPT_POST, 1 ); //使用post请求curl_setopt ( $ch, CURLOPT_HEADER, 0 );curl_setopt ( $ch, CURLOPT_RETURNTRANSFER, 1 );curl_setopt ( $…

去除list集合中重复项的几种方法

因为用到list&#xff0c;要去除重复数据&#xff0c;尝试了几种方法。记录于此。。。 测试数据&#xff1a; List<string> li1 new List<string> { "8", "8", "9", "9" ,"0","9"};List<string&g…

Crystal Reports第一张报表

新建一个网站项目&#xff0c;1. 设置数据库 从服务器资源管理器中&#xff0c;数据连接中添加新连接&#xff0c;用Microsoft Access数据库文件作为数据提供程序&#xff0c;连接上Crystal Reports的用例的数据库Xtreme2. 创建新Crystal Reports报表 在工程项目中添加一个…

leetcode 1128. 等价多米诺骨牌对的数量

给你一个由一些多米诺骨牌组成的列表 dominoes。 如果其中某一张多米诺骨牌可以通过旋转 0 度或 180 度得到另一张多米诺骨牌&#xff0c;我们就认为这两张牌是等价的。 形式上&#xff0c;dominoes[i] [a, b] 和 dominoes[j] [c, d] 等价的前提是 ac 且 bd&#xff0c;或是…

海量数据寻找最频繁的数据_寻找数据科学家的“原因”

海量数据寻找最频繁的数据Start with “Why” - Why do we do the work we do?从“为什么”开始-我们为什么要做我们所做的工作&#xff1f; The question of “Why” is always a big question. Plus, it always makes you look smart in a meeting!“ 为什么 ”的问题始终是…

C语言中局部变量和全局变量 变量的存储类别

C语言中局部变量和全局变量 变量的存储类别(static,extern,auto,register) 局部变量和全局变量在讨论函数的形参变量时曾经提到&#xff0c;形参变量只在被调用期间才分配内存单元&#xff0c;调用结束立即释放。这一点表明形参变量只有在函数内才是有效的&#xff0c;离开该函…

营销 客户旅程模板_我如何在国外找到开发人员的工作:我从营销到技术的旅程...

营销 客户旅程模板by Dimitri Ivashchuk由Dimitri Ivashchuk 我如何在国外找到开发人员的工作&#xff1a;我从营销到技术的旅程 (How I got a developer job abroad: my journey from marketing to tech) In this post, I’ll go into the details of how I, a Ukrainian mar…

keepalive的作用

keepalive的作用是实现高可用,通过VIP虚拟IP的漂移实现高可用.在相同集群内发送组播包,master主通过VRRP协议发送组播包,告诉从主的状态. 一旦主挂了从就选举新的主,实现高可用 LVS专属技能,通过配置文件控制lvs集群节点.对后端真实服务器进行健康检查. 转载于:https://www.cnb…

scrapy.Spider的属性和方法

scrapy.Spider的属性和方法 属性: name:spider的名称,要求唯一 allowed_domains:允许的域名,限制爬虫的范围 start_urls:初始urls custom_settings:个性化设置,会覆盖全局的设置 crawler:抓取器,spider将绑定到它上面 custom_settings:配置实例,包含工程中所有的配置变量 logge…

php时间操作函数总结,基于php常用函数总结(数组,字符串,时间,文件操作)

数组:【重点1】implode(分隔,arr) 把数组值数据按指定字符连接起来例如&#xff1a;$arrarray(1,2,3,4);$strimplode(-,$arr);explode([分隔],arr)按指定规则对一个字符串进行分割&#xff0c;返回值为数组 别名joinarray_merge()合并一个或多个数组array_combine(array keys, …

kaggle比赛数据_表格数据二进制分类:来自5个Kaggle比赛的所有技巧和窍门

kaggle比赛数据This article was originally written by Shahul ES and posted on the Neptune blog.本文最初由 Shahul ES 撰写&#xff0c; 并发布在 Neptune博客上。 In this article, I will discuss some great tips and tricks to improve the performance of your stru…

leetcode 1579. 保证图可完全遍历(并查集)

Alice 和 Bob 共有一个无向图&#xff0c;其中包含 n 个节点和 3 种类型的边&#xff1a; 类型 1&#xff1a;只能由 Alice 遍历。 类型 2&#xff1a;只能由 Bob 遍历。 类型 3&#xff1a;Alice 和 Bob 都可以遍历。 给你一个数组 edges &#xff0c;其中 edges[i] [typei,…

别把“运气”当“实力”

成功是两分靠努力&#xff0c;八分靠天命–何英圻何英圻先生&#xff0c;大家口中的Steven&#xff0c;是台湾网路创业圈的传奇人物。他先后创办力传(Ubid)与兴奇(Monday)两家公司&#xff0c;最后都以高价出售给北美网路巨人—Ubid在2002年以美金950万卖给eBay&#xff0c;而M…

品牌推广前期要进行哪些针对性的步骤?

企业在品牌推广前需要制订一系列有针对性和连续性的步骤&#xff0c;这些步骤定睛于长期策略&#xff0c;而且要适应目标客户的使用方式和习惯。在企业内部导入品牌VI是前提&#xff0c;外部的宣传则是强调品牌所宣扬的内涵和精神实质&#xff0c;总体来说&#xff0c;这只是一…

php的set 容器,关于STL中set容器的一些总结

1.关于setC STL 之所以得到广泛的赞誉&#xff0c;也被很多人使用&#xff0c;不只是提供了像vector, string, list等方便的容器&#xff0c;更重要的是STL封装了许多复杂的数据结构算法和大量常用数据结构操作。vector封装数组&#xff0c;list封装了链表&#xff0c;map和set…

强化学习应用于组合优化问题_如何将强化学习应用于现实生活中的计划问题

强化学习应用于组合优化问题by Sterling Osborne, PhD Researcher作者&#xff1a;斯特林奥斯本(Sterling Osborne)&#xff0c;博士研究员 如何将强化学习应用于现实生活中的计划问题 (How to apply Reinforcement Learning to real life planning problems) Recently, I hav…

导入导出报错

导入导出报错&#xff1a;另&#xff1a;右键--共享&#xff1a;停止共享&#xff1b;可能无效。此时&#xff0c;可以通过修改文件夹的权限&#xff0c;来达到停止共享的目的&#xff1b;转载于:https://www.cnblogs.com/chenjx/p/7107336.html