消费者行为分析_消费者行为分析-是否点击广告?

消费者行为分析

什么是消费者行为? (What is Consumer Behavior?)

consumer behavior is the study of individuals, groups, or organizations and all the activities associated with the purchase, use, and disposal of goods and services, and how the consumer’s emotions, attitudes, and preferences affect buying behavior.

消费者行为是对个人,团体或组织以及与购买,使用和处置商品和服务相关的所有活动的研究,以及消费者的情感,态度和偏好如何影响购买行为。

什么影响消费者行为? (What affects consumer behavior?)

Making decisions are very dynamic processing and a lot of things could affect consumer behavior. Analyzing consumer behavior data are allowed us to present products or services in a way that generates a maximum impact on consumers. Consumer behavior is often influenced by different factors such as:

决策是非常动态的处理,很多事情都会影响消费者的行为。 分析消费者行为数据使我们能够以对消费者产生最大影响的方式展示产品或服务。 消费者行为通常受不同因素的影响,例如:

  • Personal factors: a specific characteristic such as age, race, gender, culture, income, personal habit/interest, etc

    个人因素:特定特征,例如年龄,种族,性别,文化,收入,个人习惯/兴趣等
  • Psychological factors: an individual’s response to a marketing message will depend on their perceptions and attitudes.

    心理因素:个人对营销信息的React将取决于他们的看法和态度。
  • Company Website: web design, products’ reviews from other users, recommendation System

    公司网站:网页设计,其他用户的产品评论,推荐系统
  • Company’s physical store service

    公司的实体店服务
  • Social: Policy, Government, Economy, Competitors, World of mouth, Friends, and Family, etc

    社会:政策,政府,经济,竞争对手,口碑,朋友和家人等
  • Advertising: Email, Mail, Magazine, Cookie, Social Media, Affiliate(Cashback Website), Partnership (Events like NBA, World Cup, TV Shows)

    广告:电子邮件,邮件,杂志,Cookie,社交媒体,会员(现金返还网站),合作伙伴关系(NBA,世界杯,电视节目之类的活动)

为什么消费者行为数据很重要? (Why Consumer Behavior data is important?)

Understanding consumer behavior is a vital aspect of marketing. Based on consumer behavior data, we are able to know how consumers make decisions and how potential customers will respond to new products or new services. It is important to explore actionable insights from the data to support companies to put forward corresponding strategies.

了解消费者行为是营销的重要方面。 根据消费者行为数据,我们能够知道消费者如何做出决策以及潜在客户将如何响应新产品或新服务。 重要的是,从数据中探索可行的见解,以支持公司提出相应的策略。

For example, if you visit this kind of website, you do not know where should you start with and you will lose your patient then you will want to leave this website immediately. That is why we do the tests (such as AB test, usability test, etc) to gain insights into customer behavior in order to optimize the customer journey and improve key KPIs — Conversion Rate, Revenue, Customer Life Time Value, and AOV (Average Order Value).

例如,如果您访问这种网站,则不知道从哪里开始,您会失去耐心,那么您将希望立即离开该网站。 这就是为什么我们进行测试(例如AB测试,可用性测试等)以深入了解客户行为,从而优化客户旅程并改善关键KPI(转化率,收入,客户生命周期价值和AOV(平均))的原因订单价值)。

A good and nice e-commerce website can greatly affect consumer behavior.

一个好的电子商务网站可以极大地影响消费者的行为。

Image for post
here!这里 !

行为经济学的视角 (The Perspective of Behavioral Economics)

Behavioral Economics is the study of psychology as it relates to the economic decision-making processes of individuals and institutions. It could be combined with consumer behavior to study how people make decisions and how to affect people to make decisions with ‘invisible hands’.

行为经济学是对心理学的研究,因为它涉及个人和机构的经济决策过程。 它可以与消费者行为相结合,研究人们如何做出决策以及如何影响人们用“看不见的手”做出决策。

Dan Ariely is an Israeli-American professor of psychology and behavioral economics at Duke University. He mainly studies the role of human psychological phenomena in economics and how to use human psychological phenomena to influence people’s economic behavior. There are some classical examples to show how to influence consumers’ behavior.

丹·阿里利(Dan Ariely)是杜克大学(Duke University)的一名美籍美国裔心理学和行为经济学教授。 他主要研究人类心理现象在经济学中的作用以及如何利用人类心理现象影响人们的经济行为。 有一些经典的例子来说明如何影响消费者的行为。

1st example: When you apply for driver’s license at DMV you can see there is a part in your application to show if you wish to donate your organs and tissues after declared death. Dan Ariely did research about the ratio of the people who are willing to donate their organs in European countries and here is the bar chart for the result.

1日例如:当你在DMV申请驾驶证,你可以看到有在应用程序中显示的一部分,如果你想宣布死后捐出你的器官和组织。 丹·阿里利(Dan Ariely)研究了愿意在欧洲国家捐献器官的人口比例,这是得出结果的条形图。

Image for post
here!这里 !

The first four countries' situations are very different from the remaining countries. You might think those differences due to cultural and religious reasons, however, the cultures and religions of some countries are very similar. After research, he finally found that the biggest difference between those countries is the DMV application designs.

前四个国家的情况与其余国家大不相同。 您可能会认为这些差异是由于文化和宗教原因造成的,但是某些国家的文化和宗教非常相似。 经过研究,他最终发现这两个国家之间最大的不同是DMV应用程序设计。

  • design1 - Countries with low ratio: “If you wish to donate your organs and tissue, please sign here…”

    design1-比率较低的国家:“如果您想捐献器官和组织,请在此处签名……”
  • design2 -Countries with high ratio: “If you do not wish to donate your organs and tissue, please sign here…”

    design2-高比率国家:“如果您不希望捐赠器官和组织,请在此处签名……”

As long as people notice that there is something relative to “organ donation”, by the “default” most people will not sign for design 1 or design 2. So the people’s decision was affected by the different designs of organ donation consent. This is a kind of dependence on the default options because it does not give people psychological pressure.

只要人们注意到与“器官捐赠”有关的事情, 默认情况下,大多数人就不会签署外观设计1或外观设计2的签名。因此,人们的决定会受到不同形式的器官捐赠同意设计的影响。 这是对默认选项的一种依赖,因为它不会给人们带来心理压力。

2nd example: If one brand always offers a “big sale” promotion, most consumers will think that the real price is cheaper than the after-sale price and might also think “low price = low quality”. On the other hand, another expensive brand rarely offers discounts. If there is a big sale of this brand, most consumers are more likely to purchase and maybe buy some products that they might not really need.

第二例子:如果一个品牌总是提供了一个“大甩卖”的促销活动,大多数消费者会认为真正的价格比售后价格更便宜,也可能会想“低价格=低品质”。 另一方面,另一个昂贵的品牌很少提供折扣。 如果该品牌的销售量很大,那么大多数消费者更有可能购买甚至购买一些他们可能真正不需要的产品。

Image for post
here!这里 !

3rd example: There is a traveling advertisement which is for a 7-DAY tour for Rome or Paris. People have two equal options — $1800 includes the fees of hotels and meals for both different cities. The number of people who chose Roma is similar to that of people who chose Paris.

第三例子:有一个移动广告是一个7日游罗马或巴黎。 人们有两个平等的选择-1800美元包括两个城市的酒店和伙食费。 选择罗姆人的人数与选择巴黎人的人数相似。

Image for post
Mr. Gao & Mrs. Gao高先生和高太太

After a new option was added — ‘Rome: Hotel+No Meal — $1800’, most people chose to go to Rome with the “Hotel+Meal”. Actually adding the “Hotel+No Meal” option is meaningless and obviously not a lot of people will choose it. However, the purpose of the new option is to influence people’s decisions.

在增加了一个新选项“罗马:酒店+无餐-1800美元”之后,大多数人选择了带“酒店+餐”的罗马。 实际上,添加“酒店+无餐”选项是没有意义的,并且显然不会有很多人会选择它。 但是,新选项的目的是影响人们的决策。

Image for post
Mr. Gao & Mrs. Gao高先生和高太太

There is an interesting hidden theory behind those examples- Game Theory! Game Theory is a study of strategic interaction among rational decision-makers using mathematical models. If we are able to understand and analyze Consumer Behavior with Behavioral Economics/Game Theory, we can predict people’s behavior and their expectation, and then we can put forward targeted strategies that can affect consumer’s decisions and maximize their’s utility. If you are interested in Game Theory, you can visit my previous blog.

这些示例背后有一个有趣的隐藏理论,即博弈论! 博弈论是使用数学模型研究理性决策者之间的战略互动。 如果我们能够使用行为经济学/博弈论来理解和分析消费者行为,那么我们就可以预测人们的行为及其期望,然后我们可以提出有针对性的策略来影响消费者的决策并最大化他们的效用。 如果您对博弈论感兴趣,可以访问我以前的博客 。

项目介绍 (Project Introduction)

The goal of this project is to predict what kind of consumers are more likely to click the ad.

该项目的目的是预测哪种类型的消费者更有可能点击广告。

The dataset created by Jose Portilla and Pierian Data for his Udemy Course (Python for Data Science and Machine Learning Bootcamp). You can get the data from Kaggle. The data contains ten different columns:

Jose Portilla和Pierian Data为他的Udemy课程(Python for Data Science and Machine Learning Bootcamp)创建的数据集。 您可以从Kaggle获取数据。 数据包含十个不同的列:

  1. Daily Time Spent on a Site — Time spent by the user on a site in minutes.

    网站上花费的每日时间-用户在网站上花费的时间,以分钟为单位。
  2. Age — Customer’s age in terms of years.

    年龄-客户的年龄(以年为单位)。
  3. Area Income — Average income of geographical area of consumer.

    地区收入-消费者地理区域的平均收入。
  4. Daily Internet Usage — Avgerage minutes in a day consumer is on the internet.

    每天的互联网使用情况-一天的平均消费分钟数是在互联网上。
  5. Ad Topic Line — Headline of the advertisement.

    广告主题行-广告标题。
  6. City — City of the consumer.

    城市-消费者的城市。
  7. Male — Whether or not a consumer was male.

    男性-消费者是否为男性。
  8. Country — Country of the consumer.

    国家-消费者所在的国家。
  9. Timestamp — Time at which the user clicked on an Ad or the closed window.

    时间戳记-用户单击广告或关闭的窗口的时间。
  10. Clicked on Ad — 0 or 1 is indicated clicking on an Ad or not — Class 0 — not clicked, and Class 1 — clicked.

    单击广告-0或1表示是否单击广告-0级-未单击,1级-已单击。

EDA (EDA)

数值数据与目标 (Numerical Data VS Target)

Based on the image below, we can see that people who spend more time — around 80 minutes on the site are not likely to click the ad, and people who spend around 50 minutes are more likely to click the ad. The average age of the people who clicked the ad is around 40 and the average area income of consumers in class 1 is around 50000. Last, consumers in Class 1 have less daily internet usage. Those subplots are very informative and bring us some basic ideas. Besides numerical data, text data can also bring some useful information. For example, what kind of headline or topic of the ad is more attractive and consumers are more likely to click it.

根据下图,我们可以看到花费更多时间的用户-在网站上花费大约80分钟的时间不太可能点击广告,而花费大约50分钟的用户则更有可能点击广告。 点击广告的人的平均年龄为40岁左右,类别1的消费者的平均地区收入约为50000。最后,类别1的消费者的每日互联网使用量较少。 这些子图非常有用,为我们带来了一些基本思想。 除了数字数据,文本数据还可以带来一些有用的信息。 例如,哪种类型的广告标题或主题更具吸引力,而消费者更有可能点击它。

Image for post

文字数据 (Text Data)

People prefer topics like team-oriented, fully configurable, and context-sensitive, etc. We also can see that some topics that consumers do not really interest in.

人们更喜欢面向团队的主题,完全可配置的和上下文相关的主题等。我们还可以看到,一些消费者并不真正感兴趣的主题。

Image for post

相关性 (Correlations)

People aged around 40 who spend less than 80 minutes are more likely to click the ad. In Class 1, the mean age is around 40, and the daily internet usage range is between 100–200.

40岁左右,花费时间不到80分钟的用户更有可能点击该广告。 在第1类中,平均年龄约为40岁,每天的互联网使用范围为100-200。

Image for post
Code Source代码来源

造型 (Modeling)

Random Forest was applied in this project. After tuned hyperparameters with Grid Search and fitted the model, the accuracy and F1 score are up to 97%.

随机森林应用于该项目。 在使用Grid Search调整超参数并拟合模型后,准确性和F1得分高达97%。

Image for post

The feature importance chart shows that daily internet usage, daily time spent on the site, age, and area income play important roles for consumers' decision — “ Click it or not”!

功能重要性图表显示,每天的互联网使用量,每天在网站上花费的时间,年龄和地区收入对消费者的决定起着重要的作用-“单击或不单击”!

Image for post

翻译自: https://medium.com/swlh/consumer-behavior-analysis-click-or-not-6092491a89a2

消费者行为分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/391940.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

魅族mx5游戏模式小熊猫_您不知道的5大熊猫技巧

魅族mx5游戏模式小熊猫重点 (Top highlight)I’ve been using pandas for years and each time I feel I am typing too much, I google it and I usually find a new pandas trick! I learned about these functions recently and I deem them essential because of ease of u…

非常详细的Django使用Token(转)

基于Token的身份验证 在实现登录功能的时候,正常的B/S应用都会使用cookiesession的方式来做身份验证,后台直接向cookie中写数据,但是由于移动端的存在,移动端是没有cookie机制的,所以使用token可以实现移动端和客户端的token通信。 验证流程 整个基于Token的验证流程如下: 客户…

数据科学中的数据可视化

数据可视化简介 (Introduction to Data Visualization) Data visualization is the process of creating interactive visuals to understand trends, variations, and derive meaningful insights from the data. Data visualization is used mainly for data checking and cl…

手把手教你webpack3(6)css-loader详细使用说明

CSS-LOADER配置详解 前注: 文档全文请查看 根目录的文档说明。 如果可以,请给本项目加【Star】和【Fork】持续关注。 有疑义请点击这里,发【Issues】。 1、概述 对于一般的css文件,我们需要动用三个loader(是不是觉得好…

多重线性回归 多元线性回归_了解多元线性回归

多重线性回归 多元线性回归Video Link影片连结 We have taken a look at Simple Linear Regression in Episode 4.1 where we had one variable x to predict y, but what if now we have multiple variables, not just x, but x1,x2, x3 … to predict y — how would we app…

tp703n怎么做无线打印服务器,TP-Link TL-WR703N无线路由器无线AP模式怎么设置

TP-Link TL-WR703N无线路由器配置简单,不过对于没有网络基础的用户来说,完成路由器的安装和无线AP模式的设置,仍然有一定的困难,本文学习啦小编主要介绍TP-Link TL-WR703N无线路由器无线AP模式的设置方法!TP-Link TL-WR703N无线路…

pandas之groupby分组与pivot_table透视

一、groupby 类似excel的数据透视表,一般是按照行进行分组,使用方法如下。 df.groupby(byNone, axis0, levelNone, as_indexTrue, sortTrue, group_keysTrue,squeezeFalse, observedFalse, **kwargs) 分组得到的直接结果是一个DataFrameGroupBy对象。 df…

js能否打印服务器端文档,js打印远程服务器文件

js打印远程服务器文件 内容精选换一换对于密码鉴权方式创建的Windows 2012弹性云服务器,使用初始密码以MSTSC方式登录时,登录失败,系统显示“第一次登录之前,你必须更改密码。请更新密码,或者与系统管理员或技术支持联…

如何使用Python处理丢失的数据

The complete notebook and required datasets can be found in the git repo here完整的笔记本和所需的数据集可以在git repo中找到 Real-world data often has missing values.实际数据通常缺少值 。 Data can have missing values for a number of reasons such as observ…

为什么印度盛产码农_印度农产品价格的时间序列分析

为什么印度盛产码农Agriculture is at the center of Indian economy and any major change in the sector leads to a multiplier effect on the entire economy. With around 17% contribution to the Gross Domestic Product (GDP), it provides employment to more than 50…

pandas处理excel文件和csv文件

一、csv文件 csv以纯文本形式存储表格数据 pd.read_csv(文件名),可添加参数enginepython,encodinggbk 一般来说,windows系统的默认编码为gbk,可在cmd窗口通过chcp查看活动页代码,936即代表gb2312。 例如我的电脑默认编码时gb2312&…

tukey检测_回到数据分析的未来:Tukey真空度的整洁实现

tukey检测One of John Tukey’s landmark papers, “The Future of Data Analysis”, contains a set of analytical techniques that have gone largely unnoticed, as if they’re hiding in plain sight.John Tukey的标志性论文之一,“ 数据分析的未来 ”&#x…

spring— Spring与Web环境集成

ApplicationContext应用上下文获取方式 应用上下文对象是通过new ClasspathXmlApplicationContext(spring配置文件) 方式获取的,但是每次从容器中获 得Bean时都要编写new ClasspathXmlApplicationContext(spring配置文件) ,这样的弊端是配置文件加载多次…

Elasticsearch集群知识笔记

Elasticsearch集群知识笔记 Elasticsearch内部提供了一个rest接口用于查看集群内部的健康状况: curl -XGET http://localhost:9200/_cluster/healthresponse结果: {"cluster_name": "format-es","status": "green&qu…

matplotlib图表介绍

Matplotlib 是一个python 的绘图库,主要用于生成2D图表。 常用到的是matplotlib中的pyplot,导入方式import matplotlib.pyplot as plt 一、显示图表的模式 1.plt.show() 该方式每次都需要手动show()才能显示图表,由于pycharm不支持魔法函数&a…

到2025年将保持不变的热门流行技术

重点 (Top highlight)I spent a good amount of time interviewing SMEs, data scientists, business analysts, leads & their customers, programmers, data enthusiasts and experts from various domains across the globe to identify & put together a list that…

马尔科夫链蒙特卡洛_蒙特卡洛·马可夫链

马尔科夫链蒙特卡洛A Monte Carlo Markov Chain (MCMC) is a model describing a sequence of possible events where the probability of each event depends only on the state attained in the previous event. MCMC have a wide array of applications, the most common of…

django基于存储在前端的token用户认证

一.前提 首先是这个代码基于前后端分离的API,我们用了django的framework模块,帮助我们快速的编写restful规则的接口 前端token原理: 把(token加密后的字符串,keyname)在登入后发到客户端,以后客户端再发请求,会携带过来服务端截取(token加密后的字符串,keyname),我们再利用解密…

数据分布策略_有效数据项目的三种策略

数据分布策略Many data science projects do not go into production, why is that? There is no doubt in my mind that data science is an efficient tool with impressive performances. However, a successful data project is also about effectiveness: doing the righ…

java基础学习——5、HashMap实现原理

一、HashMap的数据结构 数组的特点是:寻址容易,插入和删除困难;而链表的特点是:寻址困难,插入和删除容易。那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构&#xff1…