简·雅各布斯指数第二部分:测试

In Part I, I took you through the data gathering and compilation required to rank Census tracts by the four features identified by Jane Jacobs as the foundation of a great neighborhood:

在第一部分中 ,我带您完成了根据简·雅各布斯(Jacobs Jacobs)所确定的作为大社区基础的四个要素对普查区域进行排名所需的数据收集和汇总:

  • Density

    密度
  • A mix of uses

    多种用途
  • A mix of building ages, types and conditions

    混合建筑年龄,类型和条件
  • A street network of short, connected blocks

    短而相连的街区的街道网络

Now that we have our data, we’re going to test it against some other metrics of urban quality of life and see if it is a strong predictor. I am going to test the Jane Jacobs Index and it’s component pieces against the following data:

现在我们有了数据,我们将针对城市生活质量的其他一些指标进行测试,看看它是否有力预测。 我将根据以下数据测试Jane Jacobs索引及其组成部分:

  • Crime statistics from the King County Sheriff’s Department

    金县警长部门的犯罪统计
  • Immunization rates at King County schools

    金县学校的免疫率
  • Housing affordability

    住房负担能力
  • Commute mode share

    通勤模式分享

I’m going to focus on King County in this post because my Ada County dataset, while interesting, turned out to be too small to provide meaningful results.

在这篇文章中,我将重点介绍King County,因为我的Ada County数据集虽然很有趣,但由于它太小而无法提供有意义的结果。

犯罪 (Crime)

I was very curious to see the results of this one. A lot of Death and Life is focused on the right urban design to naturally prevent crime. Jacobs’ recommendations made a lot of sense in the context of the 1950s as it focused on making the streets an interesting place to be and to simply watch from apartment windows. City streets are cool and all, but more interesting than Netflix?

我很好奇看到这一结果。 许多《 生死攸关》专注于正确的城市设计,以自然地预防犯罪。 雅各布斯(Jacobs)的建议在1950年代的背景下非常有意义,因为它的重点是使街道成为有趣的地方,并且可以从公寓的窗户直接观看。 城市街道很酷,但是比Netflix还有趣吗?

I’m going to compare the JJI to the Seattle Police Department’s publicly available crime database. I took this dataset, performed a spatial join with a Census tract shapefile, counted the incidents within each tract, then normalized it by area to get a per mile crime density. Plotting this against the Jane Jacobs Index and it’s components yields the following:

我将把JJI与西雅图警察局的公开犯罪数据库进行比较 。 我获取了此数据集,使用人口普查区域图形文件进行了空间连接,计算了每个区域内的事件,然后按区域对其进行归一化以得到每英里犯罪密度。 根据简·雅各布斯指数及其成分来绘制,得出以下结果:

I’m going to avoid over-statistics-ing my analysis in this post and just look at the pictures. Remember that the components of the JJI are rankings of census tracts based on their scores in the four qualities identified above, and the JJI is an average of those four rankings, so a low score is the Jacobs-y-est. Under the DaLoGAC hypothesis, we would see the lowest crime density in the tracts with the lowest JJI, and the dots moving upward from left to right. Interestingly, we see the opposite pattern emerging in all except the measure of housing age homogeneity. My theory on why: homelessness is the primary driver of crime in Seattle. Places that have been allowed to organically evolve and replace older, smaller buildings with newer, denser places are better able to naturally meet the housing demand, thus enabling people to meet their needs without resorting to criminal activity.

在这篇文章中,我将避免过度统计-我的分析只是看图片。 请记住,JJI的组成部分是根据人口普查区域在上述四种质量中的得分来进行排名,而JJI是这四个排名的平均值,因此,Jacobs-y-est得分较低。 在DaLoGAC假设下,我们将看到JJI最低的区域中犯罪密度最低,并且点从左到右向上移动。 有趣的是,除了住房年龄同质性的衡量标准外,我们看到了相反的格局。 关于以下原因的我的理论:无家可归是西雅图犯罪的主要驱动因素。 被允许有机发展的地方,可以用较新的,更密集的地方代替较旧的较小建筑物,从而更自然地满足住房需求,从而使人们能够满足自己的需求而无需诉诸犯罪活动。

免疫率 (Immunization Rates)

This one was more out of curiosity and because the data was there than any real hunt for urban design solutions. I am curious because trust in governments, scientific research, and similar institutions has been shown to correlate with immunization rates, and I wanted to see if there was a correlation between this trust and urban design. King County publishes immunization coverage rates by school, so I again joined that to census tract, then took an average. Here are the results:

这更多是出于好奇,因为数据在那里,而不是真正寻找城市设计解决方案的机会。 我很好奇,因为对政府,科学研究和类似机构的信任已显示与免疫接种率相关 ,并且我想看看这种信任与城市设计之间是否存在相关性。 金县按学校发布免疫覆盖率 ,因此我再次将其纳入普查范围,然后取平均值。 结果如下:

Image for post

No correlation. Crazy theory set aside for now…

没有相关性。 疯狂的理论暂时搁置了……

住房负担能力 (Housing Affordability)

For this, I took the Census Bureau’s data on median household income and median housing cost to get a percent of income spent on housing for each census tract.

为此,我采用了人口普查局关于家庭收入中位数和住房成本中位数的数据,以获取每个普查区在住房上花费的收入的百分比。

Image for post

Some correlation, but not much. Seattle is pretty uniformly expensive, so it might not be the best place for this particular research. I suspect some Midwestern cities like Chicago where parts of the city have very high housing costs while other neighborhoods are still cheaper would yield different results.

一些相关性,但不多。 西雅图非常昂贵,因此可能不是进行这项特定研究的最佳地点。 我怀疑像芝加哥这样的中西部城市,其中部分城市的住房成本很高,而其他街区仍然较便宜,它们会产生不同的结果。

通勤模式分享 (Commute Mode Share)

Getting people out of their cars has been a challenge for planners for as long as there have been cars. The results of this one are cool, so I’m going to take a deeper dive into them. The Census surveys how people are getting to work in the following high-level categories:

只要有汽车,就将人们带出汽车对计划者一直是一个挑战。 这个结果很酷,因此我将更深入地研究它们。 人口普查调查人们如何在以下高级类别中工作:

  • Drove Alone

    独自开车
  • Carpooled

    拼车
  • Public Transit

    公共交通
  • Taxicab

    出租车
  • Motorcycle

    摩托车
  • Bicycle

    自行车
  • Walking

    步行
  • Other

    其他

I’m going to compare these percent of respondents who use the various modes against the JJI, as well as the pre-ranking versions of the components. First off, here’s the population density per square mile:

我将比较使用JJI的各种模式以及这些组件的预排名版本的受访者百分比。 首先,这是每平方英里的人口密度:

Image for post

A lot of stuff starts happening when you get past 10,000 people per square mile, specifically people stop driving and start walking and using transit. This really isn’t new information, but it’s still interesting to see how strong that relationship is.

每平方英里超过10,000人时,就会发生很多事情,特别是人们停止开车,开始走路和乘公交。 这确实不是新信息,但是看到这种关系有多牢固仍然很有趣。

Next, the relationship between age of construction homogeneity and transportation:

接下来,建筑同质化年龄与运输之间的关系:

Image for post

I’m not surprised that this one is scattershot.

对于这一点,我并不感到惊讶。

Next, street network design:

接下来,街道网络设计:

Image for post

There’s a lot of hockey-stick going on here. Remember that the street score is the average length of each block divided by the average number of streets at each intersection, so a low score is more Jacobs-y. Clearly people in neighborhoods with a score under 50 are much more likely to use active transportation methods. This relationship is especially strong with walking and biking.

这里有很多曲棍球棒。 请记住,街道得分是每个街区的平均长度除以每个路口的平均街道数量,因此得分较低的雅各布斯(Jacobs-y)更大。 显然,得分低于50的社区居民更有可能使用主动交通方式。 这种关系在步行和骑自行车时尤其牢固。

Next, the percent of daily needs within one kilometer:

接下来,在一公里之内的每日需求百分比:

Image for post

If your daily needs can be met by walking, you tend to walk more. Shocking!

如果步行可以满足您的日常需求,那么您倾向于走更多的路。 令人震惊!

Finally, putting them all together, the Jane Jacobs Index:

最后,将它们放在一起,简·雅各布斯索引:

Image for post

The strong correlation continues here between Jacobs-y places and active transportation.

Jacobs-y场所与活跃交通之间的这种强相关性仍在继续。

结论 (Conclusion)

  • If you want less car dependence, build dense, mixed use neighborhoods with a short interconnected street network.

    如果您希望减少对汽车的依赖性,则可以使用短而互连的街道网络来建立密集的混合用途社区。
  • If you want lower crime, support incremental development.

    如果您想减少犯罪,请支持渐进式发展。
  • Listening to Jane Jacobs is unlikely to have negative impacts on your community.

    倾听简·雅各布斯的声音不太可能对您的社区产生负面影响。

翻译自: https://medium.com/@bcparker21/the-jane-jacobs-index-part-ii-testing-610e2e963983

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/391288.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker 入门(3)Docke的安装和基本配置

1. Docker Linux下的安装 1.1 Docker Engine 的版本 社区版 ( CE, Community Edition ) 社区版 ( Docker Engine CE ) 主要提供了 Docker 中的容器管理等基础功能,主要针对开发者和小型团队进行开发和试验企业版 ( EE, Enterprise Edition ) 企业版 ( Docker Engi…

python:单元测试框架pytest的一个简单例子

之前一般做自动化测试用的是unitest框架,发现pytest同样不错,写一个例子感受一下 test_sample.py import cx_Oracle import config from send_message import send_message from insert_cainiao_oracle import insert_cainiao_oracledef test_cainiao_mo…

抑郁症损伤神经细胞吗_使用神经网络探索COVID-19与抑郁症之间的联系

抑郁症损伤神经细胞吗The drastic changes in our lifestyles coupled with restrictions, quarantines, and social distancing measures introduced to combat the corona virus outbreak have lead to an alarming rise in mental health issues all over the world. Social…

Docker 入门(4)镜像与容器

1. 镜像与容器 1.1 镜像 Docker镜像类似于未运行的exe应用程序,或者停止运行的VM。当使用docker run命令基于镜像启动容器时,容器应用便能为外部提供服务。 镜像实际上就是这个用来为容器进程提供隔离后执行环境的文件系统。我们也称之为根文件系统&a…

python:pytest中的setup和teardown

原文:https://www.cnblogs.com/peiminer/p/9376352.html  之前我写的unittest的setup和teardown,还有setupClass和teardownClass(需要配合classmethod装饰器一起使用),接下来就介绍pytest的类似于这类的固件。 &#…

如何开始使用任何类型的数据? - 第1部分

从数据开始 (START WITH DATA) My data science journey began with a student job in the Advanced Analytics department of one of the biggest automotive manufacturers in Germany. I was nave and still doing my masters.我的数据科学之旅从在德国最大的汽车制造商之一…

iHealth基于Docker的DevOps CI/CD实践

本文由1月31日晚iHealth运维技术负责人郭拓在Rancher官方技术交流群内所做分享的内容整理而成,分享了iHealth从最初的服务器端直接部署,到现在实现全自动CI/CD的实践经验。作者简介郭拓,北京爱和健康科技有限公司(iHealth)。负责公…

机器学习图像源代码_使用带有代码的机器学习进行快速房地产图像分类

机器学习图像源代码RoomNet is a very lightweight (700 KB) and fast Convolutional Neural Net to classify pictures of different rooms of a house/apartment with 88.9 % validation accuracy over 1839 images. I have written this in python and TensorFlow.RoomNet是…

leetcode 938. 二叉搜索树的范围和

给定二叉搜索树的根结点 root,返回值位于范围 [low, high] 之间的所有结点的值的和。 示例 1: 输入:root [10,5,15,3,7,null,18], low 7, high 15 输出:32 示例 2: 输入:root [10,5,15,3,7,13,18,1,nul…

COVID-19和世界幸福报告数据告诉我们什么?

For many people, the idea of ​​staying home actually sounded good at first. This process was really efficient for Netflix and Amazon. But then sad truths awaited us. What was boring was the number of dead and intubated patients one after the other. We al…

iOS 开发一定要尝试的 Texture(ASDK)

原文链接 - iOS 开发一定要尝试的 Texture(ASDK)(排版正常, 包含视频) 前言 本篇所涉及的性能问题我都将根据滑动的流畅性来评判, 包括掉帧情况和一些实际体验 ASDK 已经改名为 Texture, 我习惯称作 ASDK 编译环境: MacOS 10.13.3, Xcode 9.2 参与测试机型: iPhone 6 10.3.3, i…

lisp语言是最好的语言_Lisp可能不是数据科学的最佳语言,但是我们仍然可以从中学到什么呢?...

lisp语言是最好的语言This article is in response to Emmet Boudreau’s article ‘Should We be Using Lisp for Data-Science’.本文是对 Emmet Boudreau的文章“我们应该将Lisp用于数据科学”的 回应 。 Below, unless otherwise stated, lisp refers to Common Lisp; in …

static、volatile、synchronize

原子性(排他性):不论是多核还是单核,具有原子性的量,同一时刻只能有一个线程来对它进行操作!可见性:多个线程对同一份数据操作,thread1改变了某个变量的值,要保证thread2…

1.10-linux三剑客之sed命令详解及用法

内容:1.sed命令介绍2.语法格式,常用功能查询 增加 替换 批量修改文件名第1章 sed是什么字符流编辑器 Stream Editor第2章 sed功能与版本处理出文本文件,日志,配置文件等增加,删除,修改,查询sed --versionsed -i 修改文件内容第3章 语法格式3.1 语法格式sed [选项] [sed指令…

python pca主成分_超越“经典” PCA:功能主成分分析(FPCA)应用于使用Python的时间序列...

python pca主成分FPCA is traditionally implemented with R but the “FDASRSF” package from J. Derek Tucker will achieve similar (and even greater) results in Python.FPCA传统上是使用R实现的,但是J. Derek Tucker的“ FDASRSF ”软件包将在Python中获得相…

初探Golang(2)-常量和命名规范

1 命名规范 1.1 Go是一门区分大小写的语言。 命名规则涉及变量、常量、全局函数、结构、接口、方法等的命名。 Go语言从语法层面进行了以下限定:任何需要对外暴露的名字必须以大写字母开头,不需要对外暴露的则应该以小写字母开头。 当命名&#xff08…

大数据平台构建_如何像产品一样构建数据平台

大数据平台构建重点 (Top highlight)Over the past few years, many companies have embraced data platforms as an effective way to aggregate, handle, and utilize data at scale. Despite the data platform’s rising popularity, however, little literature exists on…

初探Golang(3)-数据类型

Go语言拥有两大数据类型,基本数据类型和复合数据类型。 1. 数值类型 ##有符号整数 int8(-128 -> 127) int16(-32768 -> 32767) int32(-2,147,483,648 -> 2,147,483,647) int64&#x…

时间序列预测 时间因果建模_时间序列建模以预测投资基金的回报

时间序列预测 时间因果建模Time series analysis, discussed ARIMA, auto ARIMA, auto correlation (ACF), partial auto correlation (PACF), stationarity and differencing.时间序列分析,讨论了ARIMA,自动ARIMA,自动相关(ACF),…

(58)PHP开发

LAMP0、使用include和require命令来包含外部PHP文件。使用include_once命令,但是include和include_once命令相比的不足就是这两个命令并不关心请求的文件是否实际存在,如果不存在,PHP解释器就会直接忽略这个命令并且显示一个错误消息&#xf…