问卷 假设检验 t检验_真实问题的假设检验

问卷 假设检验 t检验

A statistical Hypothesis is a belief made about a population parameter. This belief may or might not be right. In other words, hypothesis testing is a proper technique utilized by scientist to support or reject statistical hypotheses. The foremost ideal approach to decide if a statistical hypothesis is correct is to examine the whole population.

统计 假设是关于总体参数的一种信念。 这种信念可能是正确的,也可能不是正确的。 换句话说,假设检验是科学家用来支持或拒绝统计假设的一种适当技术。 决定统计假设是否正确的最理想的方法是检查整个人口。

Since that’s frequently impractical, we normally take a random sample from the population and inspect the equivalent. Within the event sample data set isn’t steady with the statistical hypothesis, the hypothesis is refused.

由于这通常是不切实际的,因此我们通常从总体中随机抽取一个样本并检查等效样本。 如果事件样本数据集的统计假设不稳定,则拒绝该假设。

假设类型 (Types of hypothesis)

There are two sorts of hypothesis and both the Null Hypothesis (Ho) and Alternative Hypothesis (Ha) must be totally mutually exclusive events.

假说有两种, 空假说 (Ho)和替代假说 (Ha)必须是完全互斥的事件。

• Null hypothesis is usually the hypothesis that the event won't happen.

•空假设通常是事件不会发生的假设。

• Alternative hypothesis is a hypothesis that the event will happen.

•替代假设是事件将发生的假设。

为什么我们需要假设检验? (Why we need Hypothesis Testing?)

Suppose a company needs to launch a new bicycle in the market. For this situation, they will follow Hypothesis Testing all together decide the success of the new product in the market.

假设一家公司需要在市场上推出一款新自行车。 对于这种情况,他们将一起进行假设检验,共同决定新产品在市场上的成功。

Where the likelihood of the product being ineffective in the market is undertaken as the Null Hypothesis and the likelihood of the product being profitable is undertaken as an Alternative Hypothesis. By following the process of Hypothesis testing they will foresee the accomplishment.

将产品在市场上无效的可能性作为零假设,而将产品获利的可能性作为替代假设。 通过遵循假设检验的过程,他们将预见其成就。

如何计算假设检验? (How to Calculate Hypothesis Testing?)

· State the two theories with the goal that just one can be correct, to such an extent that the two occasions are totally unrelated.

·陈述两种理论,目标是只有一种是正确的,以至于两种情况完全无关。

· Now figure a study plan, that will lay out how the data will be assessed.

·现在制定一个研究计划,该计划将列出如何评估数据。

· Now complete the plan and genuinely investigate the sample dataset.

·现在,完成计划并真正调查样本数据集。

· Finally examine the outcome and either accept or reject the null hypothesis.

·最后检查结果,并接受或拒绝原假设。

另一个例子 (Another example)

Assume, a person has gone after a job and he has expressed in the resume that his composing speed is 70 words per minute. The recruiter might need to test his case. On the off chance that he sees his case as adequate, he will enlist him, in any case, reject him. Thus, after the test and found that his speed is 63 words a minute. Presently, he can settle on whether to employ him or not. In the event that he meets all other qualification measures. This procedure delineates Hypothesis Testing in layman’s terms.

假设一个人去找工作了,他在简历中表示自己的写作速度是每分钟70个单词。 招聘人员可能需要测试他的情况。 在他认为自己的案子足够的偶然机会上,他将征召他,无论如何,拒绝他。 这样,经过测试,发现他的速度是每分钟63个字。 目前,他可以决定是否雇用他。 如果他符合所有其他资格评定标准。 此过程以外行的术语描述了假设检验。

In statistical terms Hypothesis, his composing speed is 70 words per minute is a hypothesis to be tested so-called null hypothesis. Clearly, the alternating hypothesis his composing speed isn’t 70 words per minute. So, normal composing speed is the population parameter and sample composing speed is sample statistics.

用统计学的假设来说,他的写作速度是每分钟70个单词,这是一个需要检验的假设,即所谓的零假设。 显然,他的写作速度不是每分钟70个单词。 因此,正常合成速度是总体参数,样本合成速度是样本统计量。

The conditions of accepting or rejecting his case are to be chosen by the selection representative. For instance, he may conclude that an error of 6 words is alright to him so he would acknowledge his claim between 64 to 76 words per minute. All things considered, sample speed 63 words per minute will close to reject his case. Furthermore, the choice will be he was producing a fake claim.

selection选代表应选择接受或拒绝其案件的条件。 例如,他可能会得出结论,认为6个字的错误对他来说是可以的,因此他将承认他的要求是每分钟64到76个字。 考虑到所有因素,采样速度为每分钟63个单词将接近拒绝他的案件。 此外,选择将是他提出了虚假主张。

In any case, if the selection representative stretches out his acceptance region to positive/negative 7 words that are 63 to 77 words, he would be tolerating his case. In this way, to finish up, Hypothesis Testing is a procedure to test claims about the population dependent on the sample. It is a fascinating reasonable subject with a quite statistical jargon. You have to dive more to get familiar with the details.

无论如何,如果the选代表将他的接受范围扩展到63到77个单词的正/负7个单词,那么他将容忍自己的情况。 通过这种方式,最后,假设检验是一种测试关于依赖样本的总体的声明的过程。 这是一个引人入胜的合理主题,而且具有相当的统计术语。 您必须花更多精力去熟悉细节。

假设的显着性水平和排斥区域 (Significance Level and Rejection Region for Hypothesis)

Type I error probability is normally indicated by α and generally set to 0.05. The value of α is recognized as the significance level.

I型错误概率通常由α表示,通常设置为0.05。 α的值被认为是显着性水平

The rejection region is the set of sample data that prompts the rejection of the null hypothesis. The significance level, α, decides the size of the rejection region. Sample results in the rejection region are labelled statistically significant at the level of α.

拒绝区域是一组样本数据,提示拒绝原假设。 显着性水平α决定了拒绝区域的大小。 剔除区域的样品结果在α水平上被标记为具有统计学意义。

The impact of differing α is that If α is small, for example, 0.01, the likelihood of a type I error is little, and a ton of sample evidence for the alternative hypothesis is needed before the null hypothesis can be dismissed. Though, when α is bigger, for example, 0.10, the rejection region is bigger, and it is simpler to dismiss the null hypothesis.

不同的α的影响在于,如果α小(例如0.01),则I型错误的可能性很小,并且在可以驳回原假设之前,需要大量的替代假设样本证据。 但是,当α较大(例如0.10)时,拒绝区域较大,并且更容易消除原假设。

p值的意义 (Significance from p-values)

A subsequent methodology is to evade the utilization of a significance level and rather just report how significant the sample evidence is. This methodology is as of now more widespread. It is accomplished by the method of a P-value. P-value is a gauge of power of the evidence against the null hypothesis. It is the likelihood of getting the observed value of test statistic, or value with significantly more prominent proof against the null hypothesis (Ho) if the null hypothesis of an investigation question is true. The less significant the P-value, the more proof there is supportive of the alternative hypothesis. Sample evidence is measurably noteworthy at the α level just if the P-value is less than α. They have an association for two-tail tests. When utilizing a confidence interval to playout a two-tailed hypothesis test, reject the null hypothesis if and just if the hypothesized value doesn’t lie inside a confidence interval for the parameter.

随后的方法是逃避对显着性水平的利用,而只是报告样本证据的显着性。 截止到现在,这种方法更加广泛。 它是通过P值的方法完成的。 P值是针对原假设的证据效力的量度。 如果调查问题的原假设是真实的,则有可能获得检验统计量的观察值,或获得对原假设(Ho)具有明显更显着证明的值。 P值的意义越小,证明替代假设的证据越多。 即使P值小于α,样本证据在α水平上也相当可观。 他们有两个尾巴测试的关联。 当使用置信区间播放二尾假设检验时,如果且仅当假设值不在参数的置信区间内时,拒绝原假设。

假设检验和置信区间 (Hypothesis Tests and Confidence Intervals)

Hypothesis tests and confidence intervals are cut out of the same cloth. An event whose 95% confidence interval reject the hypothesis is an event for which p<0.05 under the relating hypothesis test, and the other way around. A P-value is letting you know the greatest confidence interval that despite everything prohibits the hypothesis. As such, if p<0.03 against the null hypothesis, that implies that a 97% confidence interval does exclude the null hypothesis.

假设检验和置信区间是从同一块布上剪下来的。 95%置信区间拒绝该假设的事件是在相关假设检验下p <0.05的事件,反之亦然。 P值让您知道最大的置信区间,尽管所有情况都阻止了该假设。 这样,如果针对原假设的p <0.03,则意味着97%的置信区间确实排除了原假设。

总体均值的假设检验 (Hypothesis Tests for a Population Mean)

We do a T-test on the ground that the population mean is unknown. The general purpose is to contrast sample mean with some hypothetical population mean, to assess whether the watched the truth is such a great amount of unique in relation to the hypothesis that we can say with assurance that the hypothetical population mean isn’t, indeed, the real population mean.

我们以总体均值未知为由进行T检验。 一般目的是将样本均值与某些假设总体均值进行对比,以评估观察到的真相与假设是否有如此多的独特性,我们可以肯定地说,假设总体均值并不是,实际人口平均数。

人口比例假设检验 (Hypothesis Tests for a Population Proportion)

At the point when you have two unique populations Z test facilitates you to choose if the proportion of certain features is the equivalent or not in the two populations. For instance, if the male proportion is equivalent between the two nations.

当您有两个唯一的总体时, Z检验可帮助您选择某些特征的比例在两个总体中是否相等。 例如,如果两国之间的男性比例相等。

均等人口方差假设检验 (Hypothesis Test for Equal Population Variances)

F Test depends on F distribution and is utilized to think about the variance of the two impartial samples. This is additionally utilized with regards to the investigation of variance for making a decision about the significance of more than two samples.

F检验取决于F分布,并用于考虑两个公正样本的方差。 关于方差研究,还可以利用它来决定两个以上样本的重要性。

T检验,F检验和Z检验 (T-test, F-test and Z-test)

T-test and F test are totally two unique things. The T-test is utilized to evaluate the population parameter, for example, the population mean, and is likewise utilized for hypothesis testing for a population mean. However, it must be utilized when we don’t know about the population standard deviation. On the off chance that we know the population standard deviation, we will utilize the Z test. We can likewise utilize T statistic to approximate population mean. T statistic is likewise utilised for discovering the distinction in two population means with the assistance of sample means.

T检验F检验完全是两件事。 T检验用于评估总体参数,例如总体平均值,并且同样用于总体平均值的假设检验。 但是,当我们不了解总体标准偏差时,必须使用它。 如果我们知道总体标准偏差,我们将使用Z检验。 我们同样可以利用T统计量来近似总体均值。 同样,在样本均值的帮助下,利用T统计量来发现两个总体均值之间的区别。

Z statistic or T statistic is utilized to assess population parameters such as population mean and population proportion. It is likewise used for testing hypothesis for population mean and population proportion. In contrast to Z statistic or T statistic, where we manage mean and proportion, Chi-Square or F test is utilized for seeing if there is any variance inside the samples. F test is the proportion of fluctuation of two samples.

Z统计量T统计量用于评估总体参数,例如总体平均值和总体比例。 它同样用于检验人口均值和人口比例的假设。 与我们管理均值和比例的Z统计量或T统计量相比,卡方检验或F检验用于查看样本内部是否存在任何方差。 F检验是两个样本的波动比例。

结论 (Conclusion)

Hypothesis encourages us to make coherent determinations, the connection among variables and gives the course to additionally investigate. Hypothesis, for the most part, results from speculation concerning studied behaviour, natural phenomenon, or proven theory. An honest hypothesis ought to be clear, detailed, and reliable with the data. In the wake of building up the hypothesis, the following stage is validating or testing the hypothesis. Testing of hypothesis includes the process that empowers to concur or differ with the expressed hypothesis.

假设鼓励我们做出连贯的决定,确定变量之间的联系,并提供进一步研究的过程。 大多数情况下,假设是由对所研究的行为,自然现象或经验证的理论的推测得出的。 诚实的假设应该对数据清楚,详细和可靠。 在建立假设之后,接下来的阶段是验证或检验假设。 假设检验包括授权与所表达的假设一致或不同的过程。

Written by:

撰写人:

Saurav Singla

绍拉夫·辛格拉

翻译自: https://medium.com/swlh/hypothesis-test-for-real-problems-64aafe17c1ad

问卷 假设检验 t检验

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/387901.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

webpack打包ES6降级ES5

Babel是一个广泛使用的转码器&#xff0c;babel可以将ES6代码完美地转换为ES5代码&#xff0c;所以我们不用等到浏览器的支持就可以在项目中使用ES6的特性。 安装babel实现ES6到ES5 npm install -D babel-core babel-preset-es2015 复制代码安装babel-loader npm install -D ba…

[转帖]USB-C和Thunderbolt 3连接线你搞懂了吗?---没搞明白.

USB-C和Thunderbolt 3连接线你搞懂了吗&#xff1f; 2018年11月25日 07:30 6318 次阅读 稿源&#xff1a;威锋网 3 条评论按照计算行业的风潮&#xff0c;USB Type-C 将会是下一代主流的接口。不过&#xff0c;在过去两年时间里&#xff0c;关于 USB-C、Thunderbolt 3、USB 3.1…

sqldeveloper的查看执行计划快捷键F10

简介&#xff1a;本文全面详细介绍oracle执行计划的相关的概念&#xff0c;访问数据的存取方法&#xff0c;表之间的连接等内容。并有总结和概述&#xff0c;便于理解与记忆!目录---一&#xff0e;相关的概念Rowid的概念Recursive Sql概念Predicate(谓词)DRiving Table(驱动表)…

大数据技术 学习之旅_为什么聚焦是您数据科学之旅的关键

大数据技术 学习之旅David Robinson, a data scientist, has said the following quotes:数据科学家David Robinson曾说过以下话&#xff1a; “When you’ve written the same code 3 times, write a function.”“当您编写了3次相同的代码时&#xff0c;请编写一个函数。” …

SQL 语句

去重字段里的值 SELECT DISTINCT cat_id,goods_sn,repay FROM ecs_goods where cat_id ! 20014 删除除去 去重字段 DELETE FROM ecs_goods where goods_id NOT IN ( select bid from (select min(goods_id) as bid from ecs_goods group by cat_id,goods_sn,repay) as b );转…

无监督学习 k-means_无监督学习-第4部分

无监督学习 k-means有关深层学习的FAU讲义 (FAU LECTURE NOTES ON DEEP LEARNING) These are the lecture notes for FAU’s YouTube Lecture “Deep Learning”. This is a full transcript of the lecture video & matching slides. We hope, you enjoy this as much as …

vCenter 升级错误 VCSServiceManager 1603

近日&#xff0c;看到了VMware发布的vCenter 6.7 Update 1b的更新消息。其中有一条比较震撼。有误删所有VM的概率&#xff0c;这种BUG谁也承受不起。Removing a virtual machine folder from the inventory by using the vSphere Client might delete all virtual machinesIn t…

day28 socketserver

1. socketserver 多线程用的 例 import socket import timeclientsocket.socket() client.connect(("127.0.0.1",9000))while 1:cmdinput("请输入指令")client.send(cmd.encode("utf-8"))from_server_msgclient.recv(1024).decode("utf…

车牌识别思路

本文源自我之前花了2天时间做的一个简单的车牌识别系统。那个项目&#xff0c;时间太紧&#xff0c;样本也有限&#xff0c;达不到对方要求的95%识别率&#xff08;主要对于车牌来说&#xff0c;D,0&#xff0c;O&#xff0c;I&#xff0c;1等等太相似了。然后&#xff0c;汉字…

深度学习算法原理_用于对象检测的深度学习算法的基本原理

深度学习算法原理You just got a new drone and you want it to be super smart! Maybe it should detect whether workers are properly wearing their helmets or how big the cracks on a factory rooftop are.您刚刚拥有一架新无人机&#xff0c;并希望它变得超级聪明&…

【python】numpy库linspace相同间隔采样 详解

linspace可以用来实现相同间隔的采样&#xff1b; numpy.linspace(start,stop,num50,endpointTrue,retstepFalse, dtypeNone) 返回num均匀分布的样本&#xff0c;在[start, stop]。 Parameters(参数): start : scalar(标量) The starting value of the sequence(序列的起始点)…

Spring整合JMS——基于ActiveMQ实现(一)

Spring整合JMS——基于ActiveMQ实现&#xff08;一&#xff09; 1.1 JMS简介 JMS的全称是Java Message Service&#xff0c;即Java消息服务。它主要用于在生产者和消费者之间进行消息传递&#xff0c;生产者负责产生消息&#xff0c;而消费者负责接收消息。把它应用到实际的…

软件本地化 pdf_软件本地化与标准翻译

软件本地化 pdfSoftware has become such an essential part of our world that it’s impossible to imagine a life without it. There’s hardly a service or product around us that wasn’t created with software or that runs on software.软件已成为我们世界的重要组成…

CentOS7+CDH5.14.0安装全流程记录,图文详解全程实测-8CDH5安装和集群配置

Cloudera Manager Server和Agent都启动以后&#xff0c;就可以进行CDH5的安装配置了。 准备文件 从 http://archive.cloudera.com/cdh5/parcels/中下载CDH5.14.0的相关文件 把CDH5需要的安装文件放到主节点上&#xff0c;新建目录为/opt/cloudera/parcel-repo把我们之前下载的…

node.js安装部署测试

&#xff08;一&#xff09;安装配置&#xff1a; 1&#xff1a;从nodejs.org下载需要的版本 2&#xff1a;直接安装&#xff0c;默认设置 &#xff0c;默认安装在c:\program files\nodejs下。 3&#xff1a;更改npm安装模块的默认目录 &#xff08;默认目录在安装目录下的node…

数据库不停机导数据方案_如何计算数据停机成本

数据库不停机导数据方案In addition to wasted time and sleepless nights, data quality issues lead to compliance risks, lost revenue to the tune of several million dollars per year, and erosion of trust — but what does bad data really cost your company? I’…

luogu4159 迷路 (矩阵加速)

考虑如果只有距离为1的边&#xff0c;那我用在时间i到达某个点的状态数矩阵 乘上转移矩阵&#xff08;就是边的邻接矩阵&#xff09;&#xff0c;就能得到i1时间的 然后又考虑到边权只有1~9&#xff0c;那可以把边拆成只有距离为1的 具体做法是一个点拆成9个然后串联 1 #includ…

社群系统ThinkSNS+ V2.2-V2.3升级教程

WARNING本升级指南仅适用于 2.2 版本升级至 2.3 版本&#xff0c;如果你并非 2.2 版本&#xff0c;请查看其他升级指南&#xff0c;Plus 程序不允许跨版本升级&#xff01;#更新代码预计耗时&#xff1a; 2 小时这是你自我操作的步骤&#xff0c;确认将你的 2.2 版本代码升级到…

BZOJ4881 线段游戏(二分图+树状数组/动态规划+线段树)

相当于将线段划分成两个集合使集合内线段不相交&#xff0c;并且可以发现线段相交等价于逆序对。也即要将原序列划分成两个单增序列。由dilworth定理&#xff0c;如果存在长度>3的单减子序列&#xff0c;无解&#xff0c;可以先判掉。 这个时候有两种显然的暴力。 将点集划分…

activemq部署安装

一、架构和技术介绍 1、简介 ActiveMQ 是Apache出品&#xff0c;最流行的&#xff0c;能力强劲的开源消息总线。完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现 2、activemq的特性 1. 多种语言和协议编写客户端。语言: Java, C, C, C#, Ruby, Perl, Python, PHP。应用协议: …