数据库
- 2.1 池化技术:如何减少频繁创建数据库连接的性能损耗?
- 2.2 数据库优化方案(一):查询请求增加时,如何做主从分离?
- 2.3 数据库优化方案(二):写入数据量增加时,如何实现分库分表?
- 2.4 发号器:如何保证分库分表后ID的全局唯一性?
- 2.5 NoSQL:在高并发场景下,数据库和NoSQL如何做到互补?
缓存
- 3.1 缓存:数据库成为瓶颈后,动态数据的查询要如何加速?
- 3.2 缓存的使用姿势(一):如何选择缓存的读写策略?
- 3.3 缓存的使用姿势(二):缓存如何做到高可用?
- 3.4 缓存的使用姿势(三):缓存穿透了怎么办?
- 3.5 CDN:静态资源如何加速?
消息队列
- 4.1 消息队列:秒杀时如何处理每秒上万次的下单请求?
- 4.2 消息投递:如何保证消息仅仅被消费一次?
- 4.3 消息队列:如何降低消息队列系统中消息的延迟?
- 4.4 面试现场第二期:当问到项目经 历时,面试官究竟想要了解什么?
分布式服务
- 5.1 系统架构:每秒1万次请求的系统要做服务化拆分吗?
- 5.2 微服务架构:微服务化后,系统架构要如何改造?
- 5.3 RPC框架:10万QPS下如何实现毫秒级的服务调用?
- 5.4 注册中心:分布式系统如何寻址?
- 5.5 分布式Trace:横跨几十个分布式组件的慢请求要如何排查?
- 5.6 负载均衡:怎样提升系统的横向扩展能力?
- 5.7 API网关:系统的门面要如何做呢?
- 5.8 多机房部署:跨地域的分布式系统如何做?
- 5.9 Service Mesh:如何屏蔽服务化系统的服务治理细节?
维护
- 6.1 给系统加上眼睛:服务端监控要怎么做?
- 6.2 应用性能管理:用户的使用体验应该如何监控?
- 6.3 压力测试:怎样设计全链路压力测试平台?
- 6.4 配置管理:成千上万的配置项要如何管理?
- 6.5 降级熔断:如何屏蔽非核心系统故障的影响?
- 6.6 流量控制:高并发系统中我们如何操纵流量?
- 6.7 面试现场第三期:你要如何准备一场技术面试呢?
实战
- 7.1 计数系统设计(一):面对海量数据的计数器要如何做?
- 7.2 计数系统设计(二):50万QPS下如何设计未读数系统?
- 7.3 信息流设计(一):通用信息流系统的推模式要如何做?
- 7.4 信息流设计(二):通用信息流系统的拉模式要如何做?
高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。
最后
由于文案过于长,在此就不一一介绍了,这份Java后端架构进阶笔记内容包括:Java集合,JVM、Java并发、微服务、SpringNetty与 RPC 、网络、日志 、Zookeeper 、Kafka 、RabbitMQ 、Hbase 、MongoDB、Cassandra 、Java基础、负载均衡、数据库、一致性算法、Java算法、数据结构、分布式缓存等等知识详解。
本知识体系适合于所有Java程序员学习,关于以上目录中的知识点都有详细的讲解及介绍,掌握该知识点的所有内容对你会有一个质的提升,其中也总结了很多面试过程中遇到的题目以及有对应的视频解析总结。
有需要的朋友可以点击这里免费获取
这里免费获取](https://gitee.com/vip204888/java-p7)**
[外链图片转存中…(img-MDIbaIqJ-1626863809586)]