linux僵尸进程产生的原因以及如何避免产生僵尸进程defunct

给进程设置僵尸状态的目的是维护子进程的信息,以便父进程在以后某个时间获取。这些信息包括子进程的进程ID、终止状态以及资源利用信息(CPU时间,内存使用量等等)。如果一个进程终止,而该进程有子进程处于僵尸状态,那么它的所有僵尸子进程的父进程ID将被重置为1(init进程)。继承这些子进程的init进程将清理它们(init进程将wait它们,从而去除僵尸状态)。

        但通常情况下,我们是不愿意留存僵尸进程的,它们占用内核中的空间,最终可能导致我们耗尽进程资源。那么为什么会产生僵尸进程以及如何避免产生僵尸进程呢?下边我将从这两个方面进行分析。

    僵尸进程的原因

        我们知道,要在当前进程中生成一个子进程,一般需要调用fork这个系统调用,fork这个函数的特别之处在于一次调用,两次返回,一次返回到父进程中,一次返回到子进程中,我们可以通过返回值来判断其返回点:

复制代码

pid_t child = fork();
if( child < 0  ) {     //fork error.perror("fork process fail.\n");
} else if( child ==0  ) {   // in child processprintf(" fork succ, this run in child process\n ");
} else {                        // in parent processprintf(" this run in parent process\n ");
}

复制代码

        如果子进程先于父进程退出, 同时父进程又没有调用wait/waitpid,则该子进程将成为僵尸进程。通过ps命令,我们可以看到该进程的状态为Z(表示僵死),如图1所示:

        ddd1

                                                   (图1)

    备注: 有些unix系统在ps命令输出的COMMAND栏以<defunct>指明僵尸进程。

        代码如下:

复制代码

if( child == -1 ) { //errorperror("\nfork child error.");exit(0);
} else if(child == 0){cout << "\nIm in child process:" <<  getpid() << endl;exit(0);
} else {cout << "\nIm in parent process."  << endl;sleep(600);
}

复制代码

        让父进程休眠600s, 然后子进程先退出,我们就可以看到先退出的子进程成为僵尸进程了(进程状态为Z)

   避免产生僵尸进程

        我们知道了僵尸进程产生的原因,下边我们看看如何避免产生僵尸进程。

        一般,为了防止产生僵尸进程,在fork子进程之后我们都要wait它们;同时,当子进程退出的时候,内核都会给父进程一个SIGCHLD信号,所以我们可以建立一个捕获SIGCHLD信号的信号处理函数,在函数体中调用wait(或waitpid),就可以清理退出的子进程以达到防止僵尸进程的目的。如下代码所示:

复制代码

void sig_chld( int signo ) {pid_t pid;int stat;pid = wait(&stat);    printf( "child %d exit\n", pid );return;
}int main() {signal(SIGCHLD,  &sig_chld);
}

复制代码

        现在main函数中给SIGCHLD信号注册一个信号处理函数(sig_chld),然后在子进程退出的时候,内核递交一个SIGCHLD的时候就会被主进程捕获而进入信号处理函数sig_chld,然后再在sig_chld中调用wait,就可以清理退出的子进程。这样退出的子进程就不会成为僵尸进程。

        然后,即便我们捕获SIGCHLD信号并且调用wait来清理退出的进程,仍然不能彻底避免产生僵尸进程;我们来看一种特殊的情况:

        我们假设有一个client/server的程序,对于每一个连接过来的client,server都启动一个新的进程去处理来自这个client的请求。然后我们有一个client进程,在这个进程内,发起了多个到server的请求(假设5个),则server会fork 5个子进程来读取client输入并处理(同时,当客户端关闭套接字的时候,每个子进程都退出);当我们终止这个client进程的时候 ,内核将自动关闭所有由这个client进程打开的套接字,那么由这个client进程发起的5个连接基本在同一时刻终止。这就引发了5个FIN,每个连接一个。server端接受到这5个FIN的时候,5个子进程基本在同一时刻终止。这就又导致差不多在同一时刻递交5个SIGCHLD信号给父进程,如图2所示:

        tcp1111

                           (图2)

        正是这种同一信号多个实例的递交造成了我们即将查看的问题。

        我们首先运行服务器程序,然后运行客户端程序,运用ps命令看以看到服务器fork了5个子进程,如图3:

        t1

                                   (图3)

        然后我们Ctrl+C终止客户端进程,在我机器上边测试,可以看到信号处理函数运行了3次,还剩下2个僵尸进程,如图4:

        t2

                                  (图4)

       通过上边这个实验我们可以看出,建立信号处理函数并在其中调用wait并不足以防止出现僵尸进程,其原因在于:所有5个信号都在信号处理函数执行之前产生,而信号处理函数只执行一次,因为Unix信号一般是不排队的(我的这篇博客中有提到http://www.cnblogs.com/yuxingfirst/p/3160697.html)。 更为严重的是,本问题是不确定的,依赖于客户FIN到达服务器主机的时机,信号处理函数执行的次数并不确定。

       正确的解决办法是调用waitpid而不是wait,这个办法的方法为:信号处理函数中,在一个循环内调用waitpid,以获取所有已终止子进程的状态。我们必须指定WNOHANG选项,他告知waitpid在有尚未终止的子进程在运行时不要阻塞。(我们不能在循环内调用wait,因为没有办法防止wait在尚有未终止的子进程在运行时阻塞,wait将会阻塞到现有的子进程中第一个终止为止),下边的程序分别给出了这两种处理办法(func_wait, func_waitpid)。

复制代码

//server.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/socket.h>
#include <errno.h>
#include <error.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <arpa/inet.h>
#include <string.h>
#include <signal.h>
#include <sys/wait.h>typedef void sigfunc(int);void func_wait(int signo) {pid_t pid;int stat;pid = wait(&stat);    printf( "child %d exit\n", pid );return;
}
void func_waitpid(int signo) {pid_t pid;int stat;while( (pid = waitpid(-1, &stat, WNOHANG)) > 0 ) {printf( "child %d exit\n", pid );}return;
}sigfunc* signal( int signo, sigfunc *func ) {struct sigaction act, oact;act.sa_handler = func;sigemptyset(&act.sa_mask);act.sa_flags = 0;if ( signo == SIGALRM ) {
#ifdef            SA_INTERRUPTact.sa_flags |= SA_INTERRUPT;    /* SunOS 4.x */
#endif} else {
#ifdef           SA_RESTARTact.sa_flags |= SA_RESTART;    /* SVR4, 4.4BSD */
#endif}if ( sigaction(signo, &act, &oact) < 0 ) {return SIG_ERR;}return oact.sa_handler;
} void str_echo( int cfd ) {ssize_t n;char buf[1024];
again:memset(buf, 0, sizeof(buf));while( (n = read(cfd, buf, 1024)) > 0 ) {write(cfd, buf, n); }if( n <0 && errno == EINTR ) {goto again; } else {printf("str_echo: read error\n");}
}int main() {signal(SIGCHLD, &func_waitpid);    int s, c;pid_t child;if( (s = socket(AF_INET, SOCK_STREAM, 0)) < 0 ) {int e = errno; perror("create socket fail.\n");exit(0);}struct sockaddr_in server_addr, child_addr; bzero(&server_addr, sizeof(server_addr));server_addr.sin_family = AF_INET;server_addr.sin_port = htons(9998);server_addr.sin_addr.s_addr = htonl(INADDR_ANY);if( bind(s, (struct sockaddr *)&server_addr, sizeof(server_addr)) < 0 ) {int e = errno; perror("bind address fail.\n");exit(0);}if( listen(s, 1024) < 0 ) {int e = errno; perror("listen fail.\n");exit(0);}while(1) {socklen_t chilen = sizeof(child_addr); if ( (c = accept(s, (struct sockaddr *)&child_addr, &chilen)) < 0 ) {perror("listen fail.");exit(0);}if( (child = fork()) == 0 ) {close(s); str_echo(c);exit(0);}close(c);}
}//client.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/socket.h>
#include <errno.h>
#include <error.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <arpa/inet.h>
#include <string.h>
#include <signal.h>void str_cli(FILE *fp, int sfd ) {char sendline[1024], recvline[2014];memset(recvline, 0, sizeof(sendline));memset(sendline, 0, sizeof(recvline));while( fgets(sendline, 1024, fp) != NULL ) {write(sfd, sendline, strlen(sendline)); if( read(sfd, recvline, 1024) == 0 ) {printf("server term prematurely.\n"); }fputs(recvline, stdout);memset(recvline, 0, sizeof(sendline));memset(sendline, 0, sizeof(recvline));}
}int main() {int s[5]; for (int i=0; i<5; i++) {if( (s[i] = socket(AF_INET, SOCK_STREAM, 0)) < 0 ) {int e = errno; perror("create socket fail.\n");exit(0);}}for (int i=0; i<5; i++) {struct sockaddr_in server_addr, child_addr; bzero(&server_addr, sizeof(server_addr));server_addr.sin_family = AF_INET;server_addr.sin_port = htons(9998);inet_pton(AF_INET, "127.0.0.1", &server_addr.sin_addr);if( connect(s[i], (struct sockaddr *)&server_addr, sizeof(server_addr)) < 0 ) {perror("connect fail."); exit(0);}}sleep(10);str_cli(stdin, s[0]);exit(0);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/384976.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux下僵尸进程(Defunct进程)的产生与避免

在测试基于 DirectFBGstreamer 的视频联播系统的一个 Demo 的时候&#xff0c;其中大量使用 system 调用的语句&#xff0c;例如在 menu 代码中的 system("./play") &#xff0c;而且多次执行&#xff0c;这种情况下&#xff0c;在 ps -ef 列表中出现了大量的 defunc…

读过的最好的epoll讲解

首先我们来定义流的概念&#xff0c;一个流可以是文件&#xff0c;socket&#xff0c;pipe等等可以进行I/O操作的内核对象。 不管是文件&#xff0c;还是套接字&#xff0c;还是管道&#xff0c;我们都可以把他们看作流。 之后我们来讨论I/O的操作&#xff0c;通过read&#xf…

C语言指针转换为intptr_t类型

C语言指针转换为intptr_t类型 1、前言 今天在看代码时&#xff0c;发现将之一个指针赋值给一个intptr_t类型的变量。由于之前没有见过intptr_t这样数据类型&#xff0c;凭感觉认为intptr_t是int类型的指针。感觉很奇怪&#xff0c;为何要将一个指针这样做呢&#xff1f;如是果…

北京加密机现场select问题

问题描述 北京项目通过调用我们提供的库libsigxt.a与加密机通信&#xff0c;c/s架构&#xff0c;客户端启用多个线程&#xff0c;每个线程流程有以下三步&#xff0c;连接加密机&#xff0c;签名&#xff0c;关闭链接。在正常运行一段时间后会出现不能连接加密机服务问题。 连…

处理SIGCHLD信号

在上一讲中&#xff0c;我们使用fork函数得到了一个简单的并发服务器。然而&#xff0c;这样的程序有一个问题&#xff0c;就是当子进程终止时&#xff0c;会向父进程发送一个SIGCHLD信号&#xff0c;父进程默认忽略&#xff0c;导致子进程变成一个僵尸进程。僵尸进程一定要处理…

nginx源码阅读(一).综述

前言 nginx作为一款开源的轻量级高性能web服务器,是非常值得立志从事服务端开发方向的人学习的。现今nginx的最新版本是nginx-1.13.6,代码量也日渐庞大,但是由于其核心思想并没改变,为了降低阅读难度,我选择的是nginx-1.0.15版本,并且由于时间和水平有限,重点关注的是nginx的启…

系统级性能分析工具perf的介绍与使用

系统级性能优化通常包括两个阶段&#xff1a;性能剖析&#xff08;performance profiling&#xff09;和代码优化。 性能剖析的目标是寻找性能瓶颈&#xff0c;查找引发性能问题的原因及热点代码。 代码优化的目标是针对具体性能问题而优化代码或编译选项&#xff0c;以改善软…

C/C++内存问题检查利器——Purify

C&#xff0f;C内存问题检查利器——Purify 一、 引言 我们都知道软件的测试&#xff08;在以产品为主的软件公司中叫做QA—Quality Assessment&#xff09;占了整个软件工程的30% -50%&#xff0c;但有这么一种说法&#xff0c;即使是最优秀测试专家设计出来的测试…

浅析三种特殊进程:孤儿进程,僵尸进程和守护进程

其实有时想想linux内核的设计也蕴含着很多人生哲学,在linux中有这么几个特殊进程中,我们一开始见到它们的名字可能还会觉得很诧异,但在了解完了原理后,我们仔细想想,这样的命名也不无道理!下面我就给大家分别介绍一下这三种特殊的进程! 1.孤儿进程 如果父进程先退出,子进程还没…

差生文具多之(二): perf

栈回溯和符号解析是使用 perf 的两大阻力&#xff0c;本文以应用程序 fio 的观测为例子&#xff0c;提供一些处理它们的经验法则&#xff0c;希望帮助大家无痛使用 perf。 前言 系统级性能优化通常包括两个阶段&#xff1a;性能剖析和代码优化&#xff1a; 性能剖析的目标是寻…

Linux下的I/O复用与epoll详解(ET与LT)

前言 I/O多路复用有很多种实现。在linux上&#xff0c;2.4内核前主要是select和poll&#xff0c;自Linux 2.6内核正式引入epoll以来&#xff0c;epoll已经成为了目前实现高性能网络服务器的必备技术。尽管他们的使用方法不尽相同&#xff0c;但是本质上却没有什么区别。本文将重…

彻底学会使用epoll(一)——ET模式实现分析

注&#xff1a;之前写过两篇关于epoll实现的文章&#xff0c;但是感觉懂得了实现原理并不一定会使用&#xff0c;所以又决定写这一系列文章&#xff0c;希望能够对epoll有比较清楚的认识。是请大家转载务必注明出处&#xff0c;算是对我劳动成果的一点点尊重吧。另外&#xff0…

sys/queue.h分析(图片复制不过来,查看原文)

这两天有兴趣学习使用了下系统头文件sys/queue.h中的链表/队列的实现&#xff0c;感觉实现的很是优美&#xff0c;关键是以后再也不需要自己实现这些基本的数据结构了&#xff0c;哈哈&#xff01; 我的系统环境是 正好需要使用队列&#xff0c;那么本篇就以其中的尾队列&…

线程池原理及C语言实现线程池

备注&#xff1a;该线程池源码参考自传直播客培训视频配套资料&#xff1b; 源码&#xff1a;https://pan.baidu.com/s/1zWuoE3q0KT5TUjmPKTb1lw 密码&#xff1a;pp42 引言&#xff1a;线程池是一种多线程处理形式&#xff0c;大多用于高并发服务器上&#xff0c;它能合理有效…

iptables 的mangle表

mangle表的主要功能是根据规则修改数据包的一些标志位&#xff0c;以便其他规则或程序可以利用这种标志对数据包进行过滤或策略路由。 内网的客户机通过Linux主机连入Internet&#xff0c;而Linux主机与Internet连接时有两条线路&#xff0c;它们的网关如图所示。现要求对内网进…

Linux之静态库

命名规则&#xff1a; lib 库的名字 .a 制作步骤 生成对应.o文件 .c .o 将生成的.o文件打包 ar rcs 静态库的名字&#xff08;libMytest.a&#xff09; 生成的所有的.o 发布和使用静态库&#xff1a; 1&#xff09; 发布静态 2&#xff09; 头文件 文件如下图所示&…

Linux之动态库

命令规则 lib 名字 .so 制作步骤 1&#xff09;生成与位置无关的代码&#xff08;生成与位置无关的代码&#xff09; 2&#xff09;将.o打包成共享库&#xff08;动态库&#xff09; 发布和使用共享库 动态库运行原理&#xff1a; 生成动态库&#xff1a; gcc -fPIC -c *.c -…

linux下源码安装vsftpd-3.0.2

1&#xff09;在http://vsftpd.beasts.org/网站中查找并下载 vsftpd-3.0.2.tar.gz源码包 2)如果自己的机器上安装有yum可以用yum grouplist | less指令查看以下开发环境&#xff0c;当然这一步不做也行 3&#xff09;拆解源码包 4&#xff09;查看源码包 5&#xff09;编辑…

Gdb 调试core文件详解

一&#xff0c;什么是coredump 我们经常听到大家说到程序core掉了&#xff0c;需要定位解决&#xff0c;这里说的大部分是指对应程序由于各种异常或者bug导致在运行过程中异常退出或者中止&#xff0c;并且在满足一定条件下&#xff08;这里为什么说需要满足一定的条件呢&#…

Windows下编译openssl库

1、概述 OpenSSL是一个开放源代码的软件库包&#xff0c;它实现了 SSL&#xff08;Secure SocketLayer&#xff09;和 TLS&#xff08;Transport Layer Security&#xff09;协议&#xff0c;所以应用程序可以使用这个包来进行安全通信&#xff0c;避免窃听&#xff0c;同时确…