Python3迭代器和生成器

迭代器

迭代是Python最强大的功能之一,是访问元素集合的一种方法。

迭代器是一个可以记住遍历的位置的对象。

迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束,迭代器只能向前不会后退。

迭代器有两个基本方法,iter()和next()。

字符串,列表,或元组对象都可以用于创建迭代器。

 

 

迭代器对象可以使用常规语句for进行遍历:

 

 

 

使用next()函数:

#next.py
import syslist = [1,2,3,4]
it = iter(list)while True:try:print(next(it))except StopIteration:sys.exit()

运行结果:

robot@ubuntu:~/wangqinghe/python/20190827$ python3.5 next.py

1

2

3

4

 

创建一个迭代器:

把一个类作为一个迭代器使用需要在类中实现两个方法__iter__()与__next__().

类都是由一个构造函数,Python的构造函数为__init__(),它会在对象初始化的时候执行。

__iter__方法返回一个特殊的迭代器对象,这个迭代器对象实现了__next__()方法通过StopIteration异常标识迭代的完成。

__next__()方法会返回下一个迭代器对象。

 

#iter.py
class MyNumbers:def __iter__(self):self.a = 1return selfdef __next__(self):x = self.aself.a += 1return xmyclass = MyNumbers()
myiter = iter(myclass)print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))

运行结果:

robot@ubuntu:~/wangqinghe/python/20190827$ python3.5 iter.py

1

2

3

4

5

6

 

StopIteration

StopIteration异常用于标识迭代的完成,防止出现无限循环的情况,在__next__方法种我们可以设置在完成指定循环次数后触发StopIteration异常来结束迭代。

 

在20次迭代后停止执行:

#stop.py
class MyNumbers:def __iter__(self):self.a = 1return selfdef __next__(self):if self.a <= 20:x = self.aself.a += 1return xelse:raise StopIterationmyclass = MyNumbers()
myiter = iter(myclass)for x in myiter:print(x)

运行结果:

robot@ubuntu:~/wangqinghe/python/20190827$ python3.5 stop.py

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 

生成器:

在Python中,使用了yield的函数被称为生成器(generator)。

跟普通函数不同,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。

在调用生成器运行过程中,每次遇到yield时函数会暂停并保持当前所有运行信息,返回yield的值,并在下一次执行next()方法时从当前位置继续运行。

调用一个生成器函数,返回的是一个迭代器对象。

#yield.py
import sysdef fibonacci(n):a,b,counter = 0,1,0while True:if(counter > n):return yield aa,b = b,a+bcounter += 1
f = fibonacci(10)while True:try:print(next(f),end=" ")except StopIteration:sys.exit()

运行结果:

robot@ubuntu:~/wangqinghe/python/20190827$ python3 yield.py

0 1 1 2 3 5 8 13 21 34 55

 

什么时候需要用到yield

一个函数f,返回一个list,这个list是动态计算出来的,并且这个list会很大,这个时候我们希望每次调用这个函数并使用迭代器进行循环的时候,一个一个的得到每个list的值,而不是直接得到一个list来节省内存,这个时候yield就很有用。

 

转载于:https://www.cnblogs.com/wanghao-boke/p/11419965.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/384843.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python3函数

函数是组织好的&#xff0c;可重复使用的&#xff0c;用来实现单一&#xff0c;或相关功能的代码段。 函数能提高应用的模块性&#xff0c;和代码的重复使用率。 定义一个函数 可以定义一个由自己想要功能的函数&#xff0c;以下是简单规则&#xff1a; l 函数代码块是以def关…

epoll函数

epoll是Linux下多路复用IO接口select/poll的增强版本&#xff0c;它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率&#xff0c;因为它会复用文件描述符集合来传递结果而不用迫使开发者每次等待事件之前都必须重新准备要被侦听的文件描述符集合&#xff0…

Python3数据结构

列表&#xff1a; Python列表是可变的&#xff0c;这是它区别于字符串数组和元组的最重要的特点。列表可以修改&#xff0c;而字符串和元组不能。 以下是Python中列表的描述方法&#xff1a; 方法 描述 list.append(x) 将元素添加到列表结尾 list.extend(L) 通过添加指定列…

Python3输入输出

Python两种输出值的方式&#xff0c;表达式语句和print()函数。 第三种方式是使用文件对象的write()方法&#xff0c;标准输出文件可以用sys.stdout的引用。 如果你希望输出的形式更加多样&#xff0c;可以使用str.fomat()函数来格式化输出值。 如果你希望将输出的值转化成字符…

Python3正则表达式

正则表达式是一个特殊的字符序列&#xff0c;他能帮助你方便的检查一个字符串是否与某种模式匹配。re.match函数 re.match尝试从字符串的起始位置匹配一个模式&#xff0c;如果不是起始位置匹配成功的话&#xff0c;match()就返回一个none。 函数语法&#xff1a; re.match(pat…

signal()函数

函数原型 void (*signal(int sig,void(*func)(int)))(int); 指定使用sig指定的信号编号处理信号的方法。参数func指定程序可以处理信号的三种方式之一&#xff1a; l 默认处理(SIG_DFL)&#xff1a; 信号由该特定信号的默认动作处理l 忽略信号&#xff08;SIG_IGN&a…

【C++学习之路】第一章——C++核心方法总论

1 C核心方法总论 1.1 核心思想 通过实际项目来学习编程&#xff0c;更高效掌握编程规则&#xff0c;以及明白各种语法规则的实际应用。 实验思想&#xff1a;任何C的参考资料都不可能覆盖你遇到的所有问题&#xff0c;这个时候&#xff0c;最好的办法就是&#xff0c;编辑代…

【学会如何学习系列】从婴儿到大学——学习的本质从未改变过

从婴儿到大学——学习的本质从未改变过 从我们出生一直到现在&#xff0c;其实&#xff0c;学习的本质从来都没有改变过&#xff0c;并且&#xff0c;婴儿时期的我们&#xff0c;是学习能力最强的时候&#xff0c;随着我们不断长大&#xff0c;外界的诱惑越来越多&#xff0c;…

【Verilog HDL学习之路】第二章 Verilog HDL的设计方法学——层次建模

2 Verilog HDL的设计方法学——层次建模 重要的思想&#xff1a; 在语文教学中&#xff0c;应该先掌握核心方法论&#xff0c;再用正确的方法论去做题目&#xff0c;这样能够逐渐加深对于方法论的理解&#xff0c;做题的速度和准确率也会越来越高。在Verilog HDL中&#xff0c…

【Verilog HDL】第四章 模块的端口连接规则——污水处理模型

先放上连接规则的简图&#xff0c;再详细解释 1. 构建模型——污水处理之流水模型 我们先将上述结构构件一个简单模型&#xff0c;以帮助我们理解。 污水&#xff1a;输入数据净水&#xff1a;输出数据双向数据暂不讨论&#xff0c;取输入和输出的交集即可污水处理厂&…

【Verilog HDL】从逻辑电路图到门级建模——人工翻译的方法论

从左到右&#xff0c;从上到下 先搞定缓冲/非门&#xff0c;再写与/或门 1. 实例解读 先以四选一数据选择器进行说明 对于数字逻辑的部分不再说明&#xff0c;直接进行逻辑电路图到Verilog门级建模的人工翻译过程的描述。 1.1 端口和线网分析 确定输入/输出端口 输入端口 …

【Verilog HDL】语句的并发执行

1. 实践得到的启发 先从一个简单的现象得出结论&#xff0c;Verilog语句是并发执行的&#xff01; 同时&#xff0c;这也是**$monitor系统任务为全局有效**的一个重要支持因素&#xff0c;如果没有并发&#xff0c;它是完不成这项功能的实现的。 众所周知&#xff0c;高级语…

【数字逻辑】第四章 组合逻辑电路:端口设计 端口拓展的方法

1. 端口设计的方法 1.1 数据选择器 以四选一数据选择器为例&#xff0c;需要的不同接口类型为 输入端口 数据输入端口地址输入端口使能端&#xff08;控制与拓展&#xff09; 输出端口 数据输出端口 2. 端口拓展的方法——层次建模思想 2.0 两个拓展方向 2.0.1 “数组型…

【Verilog HDL】第三章 reg和net及其一组类型的区别——充分运用实验思维

0 确定问题的讨论层级与范围 本文讨论的层次是 数字逻辑与Verilog HDL语言 讨论的范围是&#xff1a; 数据存储而不是讨论逻辑 1 线网类型 1.1 wire类型 这个暂时没什么好说的&#xff0c;一般常用的就是wire类型&#xff0c;需要注意的是&#xff1a; 默认是标量&…

【C/C++ 汇编语言 Verilog】越界截断——数据越界问题的多角度分析

0 前言 0.1 讨论层级和范围 讨论层级 计算机底层&#xff1a;硬件层次与汇编指令层次信息与二进制位 讨论范围 信息的存储与运算在汇编语言与Verilog HDL中的联系与区别事实上&#xff0c;数据越界截断问题&#xff0c;在计算机体系的任何层次&#xff0c;都可能发生&#xf…

【VS C++ 2010】查看内存的方法详解

1 示例代码 对于以下代码&#xff1a; int main() {int a 100010001000;int b 100;cout << "a " << a << " " << &a << endl;cout << "b " << b << " " << &b…

【汇编语言】上机实验 win7/8/10 64位系统 进入32位DOS模式 实现dubug/edit/masm/link功能

1 软件下载和安装 下载并安装DOSBox软件&#xff0c;注意&#xff0c;不要装在C盘上&#xff0c;装在其他盘上 【备注】软件直接百度搜索即可下载Debug.exe文件 【备注】百度搜索“Debug 64位 下载” 对于下载后得到的debug.exe文件 将这个文件拷贝到磁盘根目录下&#xff0c…

【数字逻辑 Verilog】全面剖析数据选择器——从基础到拓展,从理论到设计的实现,从表面到本质

0 前言 0.1 使用环境 EDA工具&#xff1a;Vivado 2017.4硬件描述语言&#xff1a;Verilog HDL 0.2 涉及知识 数字逻辑Verilog 1 基础模块&#xff1a;一位四选一数据选择器 1.1 设计部分&#xff1a;层次建模 1.1.1 需求分析 设计一个一位的四选一数据选择器&#xff0…

【计算机网络】手动配置hosts文件解决使用GitHub和Coursera网站加载慢/卡的问题

目录0 前言1 打开hosts1.1 以管理员身份运行记事本1.2 打开hosts2 找到实际地址2.1 打开cmd2.2 找到网址3 替换地址3.1 修改hosts文件3.2 刷新4 后续内容的完善0 前言 本文是针对纯小白读者&#xff0c;没有涉及到任何的专业知识&#xff0c;你只需要按照步骤操作即可。 同时…

【汇编语言】镜像迁移能力之一通百通——由代码段和CS:IP的原理,掌握一类寄存器的使用

0 前言 你应该知道8086CPU的物理地址形成方式及其原理&#xff0c;才能完成本文的学习。 1 内存的分段 对于内存&#xff0c;人们人为地将其划分为一段一段的&#xff0c;比如代码段和数据段等&#xff0c;特别注意&#xff0c;这是人为划分的结果&#xff0c;方面人类使用&…