本次主要讲c++11中的右值引用,后面还会讲到右值引用如何结合std::move优化我们的程序。
c++11增加了一个新的类型,称作右值引用(R-value reference),标记为T &&,说到右值引用类型之前先要了解什么是左值和右值。
左值具名,对应指定内存域,可访问;右值不具名,不对应内存域,不可访问。临时对像是右值。左值可处于等号左边,右值只能放在等号右边。区分表达式的左右值属性有一个简便方法:若可对表达式用 & 符取址,则为左值,否则为右值。
1.简单的赋值语句
如:int i = 0;
在这条语句中,i 是左值,0 是临时值,就是右值。在下面的代码中,i 可以被引用,0 就不可以了。立即数都是右值。
2.右值也可以出现在赋值表达式的左边,但是不能作为赋值的对象,因为右值只在当前语句有效,赋值没有意义。
如:((i>0) ? i : j) = 1;
在这个例子中,0 作为右值出现在了”=”的左边。但是赋值对象是 i 或者 j,都是左值。
在 C++11 之前,右值是不能被引用的,最大限度就是用常量引用绑定一个右值,如 :
const int &a = 1;
在这种情况下,右值不能被修改的。但是实际上右值是可以被修改的,既然右值可以被修改,那么就可以实现右值引用。右值引用能够方便地解决实际工程中的问题。
int && a = 1; //&&为右值引用
&&的特性
实际上T&&并不是一定表示右值引用,它的引用类型是未定的,即可能是左值有可能是右值。看看这个例子:
template<typename T> void f(T&& param);f(10); //10是右值 int x = 10; f(x); //x是左值
从这个例子可以看出,param有时是左值引用,有时是右值引用,它在上面的例子中&&实际上是一个未定的引用类型。这个未定的引用类型被scott meyers称为universal references(可以认为它是种通用的引用类型),它必须被初始化,它是左值应用还是右值引用取决于它的初始化,如果&&被一个左值初始化的话,它就是一个左值引用;如果它被一个右值初始化的话,它就是一个右值引用。
&&为universal references时的唯一条件是有类型推断发生。
template<typename T> void f(T&& param); //这里T的类型需要推导,所以&&是一个universal references template<typename T> class Test { ... Test(Test&& rhs); // 已经定义了一个特定的类型, 没有类型推断 ... // && 是一个右值引用 };void f(Test&& param); // 已经定义了一个确定的类型, 没有类型推断,&& 是一个右值引用
再看一个复杂一点的例子
template<typename T>
void f(std::vector<T>&& param);
这里既有推断类型T又有确定类型vector,那么这个param到底是什么类型呢?
它是右值引用类型,因为在调用这个函数之前,这个vector<T>中的推断类型已经确定了,所以到调用f时没有类型推断了。
再看看这个例子:
template<typename T> void f(const T&& param);
这个param是universal references吗?错,它是右值引用类型,也许会迷糊,T不是推断类型吗,怎么会是右值引用类型。其实还有一条规则:universal references仅仅在T&&下发生,任何一点附加条件都会使之失效,而变成一个右值引用。
引用折叠(Reference collapsing)规则:
- 所有的右值引用叠加到右值引用上变成一个右值引用
- 所有的其它引用类型叠加都变成一个左值引用
- 左值或者右值是独立于它的类型的,也就是说一个右值引用类型的左值是合法的。
int&& var1 = x; // var1 is of type int&& (no use of auto here) auto&& var2 = var1; // var2 is of type int& ,var2的类型是universal references(有类型推导)
var1的类型是一个左值类型,但var1本身是一个左值;
var1是一个左值,根据引用折叠规则,var2是一个int&
int w1, w2; auto&& v1 = w1; decltype(w1)&& v2 = w2;
v1是一个universal reference,它被一个左值初始化,所以它最终一个左值;
v2是一个右值引用类型,但它被一个左值初始化,一个左值初始化一个右值引用类型是不合法的,所以会编译报错。但是如果我希望把一个左值赋给一个右值引用类型该怎么做呢 ,用std::move,decltype(w1)&& v2 = std::move(w2); std::move可以将一个左值转换成右值,关于std::move将在下一篇博文中介绍。
&&的总结:
- 左值和右值是独立于它们的类型的,一个左值的类型有可能是右值引用类型。
- T&&是一个未定的引用类型,它可能是左值引用也可能是右值引用类型,取决于初始化的值类型。
- &&成为未定的引用类型的唯一条件是:T&&且发生类型推断。
- 所有的右值引用叠加到右值引用上变成一个右值引用,其它引用折叠都为左值引用。
如果想更详细了解&&,可以参考scott-meyers这个文章:http://isocpp.org/blog/2012/11/universal-references-in-c11-scott-meyers
右值引用优化性能,避免深拷贝
右值引用是用来支持转移语义的。转移语义可以将资源 ( 堆,系统对象等 ) 从一个对象转移到另一个对象,这样能够减少不必要的临时对象的创建、拷贝以及销毁,能够大幅度提高 C++ 应用程序的性能。消除了临时对象的维护 ( 创建和销毁 ) 对性能的影响。
以一个简单的 string 类为示例,实现拷贝构造函数和拷贝赋值操作符。
class MyString { private: char* m_data; size_t m_len; void copy_data(const char *s) { m_data = new char[m_len+1]; memcpy(_data, s, m_len); m_data[_len] = '\0'; } public: MyString() { m_data = NULL; m_len = 0; } MyString(const char* p) { m_len = strlen (p); copy_data(p); } MyString(const MyString& str) { m_len = str.m_len; copy_data(str.m_data); std::cout << "Copy Constructor is called! source: " << str.m_data << std::endl; } MyString& operator=(const MyString& str) { if (this != &str) { m_len = str.m_len; copy_data(str._data); } std::cout << "Copy Assignment is called! source: " << str.m_data << std::endl; return *this; } virtual ~MyString() { if (m_data) free(m_data); } };
void test() { MyString a; a = MyString("Hello"); std::vector<MyString> vec; vec.push_back(MyString("World")); }
实现了调用拷贝构造函数的操作和拷贝赋值操作符的操作。MyString(“Hello”) 和 MyString(“World”) 都是临时对象,也就是右值。虽然它们是临时的,但程序仍然调用了拷贝构造和拷贝赋值,造成了没有意义的资源申请和释放的操作。如果能够直接使用临时对象已经申请的资源,既能节省资源,有能节省资源申请和释放的时间。这正是定义转移语义的目的。
用c++11的右值引用来定义这两个函数
MyString(MyString&& str) { std::cout << "Move Constructor is called! source: " << str._data << std::endl; _len = str._len; _data = str._data; //避免了不必要的拷贝str._len = 0; str._data = NULL; }
MyString& operator=(MyString&& str) { std::cout << "Move Assignment is called! source: " << str._data << std::endl; if (this != &str) { _len = str._len; _data = str._data; //避免了不必要的拷贝str._len = 0; str._data = NULL; } return *this; }
有了右值引用和转移语义,我们在设计和实现类时,对于需要动态申请大量资源的类,应该设计右值引用的拷贝构造函数和赋值函数,以提高应用程序的效率。
c++11 boost技术交流群:296561497,欢迎大家来交流技术。