redis源码剖析(四)跳表

文章目录

    • 整数集合
    • 跳跃表
    • 压缩列表
    • 总结

整数集合

当一个集合只包含整数,且这个集合的元素不多的时候,Redis 就会使用整数集合 intset 。首先看 intset 的数据结构:

typedef struct intset {// 编码方式uint32_t encoding;// 集合包含的元素数量uint32_t length;// 保存元素的数组int8_t contents[];
} intset;

其实 intset 的数据结构比较好理解。一个数据保存元素,length 保存元素的数量,也就是contents的大小,encoding 用于保存数据的编码方式。

通过代码我们可以知道,encoding 的编码类型包括了:

#define INTSET_ENC_INT16 (sizeof(int16_t))
#define INTSET_ENC_INT32 (sizeof(int32_t))
#define INTSET_ENC_INT64 (sizeof(int64_t))

实际上我们可以看出来。 Redis encoding的类型,就是指数据的大小。作为一个内存数据库,采用这种设计就是为了节约内存。

既然有从小到大的三个数据结构,在插入数据的时候尽可能使用小的数据结构来节约内存,如果插入的数据大于原有的数据结构,就会触发扩容。

扩容有三个步骤:

  1. 根据新元素的类型,修改整个数组的数据类型,并重新分配空间
  2. 将原有的的数据,装换为新的数据类型,重新放到应该在的位置上,且保存顺序性
  3. 再插入新元素

整数集合不支持降级操作,一旦升级就不能降级了。

跳跃表

跳跃表是链表的一种,是一种利用空间换时间的数据结构。跳表平均支持 O(logN),最坏O(N)复杂度的查找。

跳表是由一个zskiplist 和 多个 zskiplistNode 组成。我们先看看他们的结构:

/* ZSETs use a specialized version of Skiplists */
/** 跳跃表节点*/
typedef struct zskiplistNode {// 成员对象robj *obj;// 分值double score;// 后退指针struct zskiplistNode *backward;// 层struct zskiplistLevel {// 前进指针struct zskiplistNode *forward;// 跨度unsigned int span;} level[];} zskiplistNode;/** 跳跃表*/
typedef struct zskiplist {// 表头节点和表尾节点struct zskiplistNode *header, *tail;// 表中节点的数量unsigned long length;// 表中层数最大的节点的层数int level;} zskiplist;

所以根据这个代码我们可以画出如下的结构图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8veqZuZy-1573628505436)(media/15663755251342/15663757297856.jpg)]

其实跳表就是一个利用空间换时间的数据结构,利用 level 作为链表的索引。

之前有人问过 Redis 的作者 为什么使用跳跃表,而不是 tree 来构建索引?作者的回答是:

  1. 省内存。
  2. 服务于 ZRANGE 或者 ZREVRANGE 是一个典型的链表场景。时间复杂度的表现和平衡树差不多。
  3. 最重要的一点是跳跃表的实现很简单就能达到 O(logN)的级别。

压缩列表

压缩链表 Redis 作者的介绍是,为了尽可能节约内存设计出来的双向链表。
对于一个压缩列表代码里注释给出的数据结构如下:
在这里插入图片描述

zlbytes 表示的是整个压缩列表使用的内存字节数zltail 指定了压缩列表的尾节点的偏移量zllen 是压缩列表 entry 的数量entry 就是 ziplist 的节点zlend 标记压缩列表的末端

这个列表中还有单个指针:

ZIPLIST_ENTRY_HEAD 列表开始节点的头偏移量ZIPLIST_ENTRY_TAIL 列表结束节点的头偏移量ZIPLIST_ENTRY_END 列表的尾节点结束的偏移量

再看看一个 entry 的结构:

/** 保存 ziplist 节点信息的结构*/
typedef struct zlentry {// prevrawlen :前置节点的长度// prevrawlensize :编码 prevrawlen 所需的字节大小unsigned int prevrawlensize, prevrawlen;// len :当前节点值的长度// lensize :编码 len 所需的字节大小unsigned int lensize, len;// 当前节点 header 的大小// 等于 prevrawlensize + lensizeunsigned int headersize;// 当前节点值所使用的编码类型unsigned char encoding;// 指向当前节点的指针unsigned char *p;} zlentry;

依次解释一下这几个参数。

prevrawlen 前置节点的长度,这里多了一个 size,其实是记录了 prevrawlen 的尺寸。Redis 为了节约内存并不是直接使用默认的 int 的长度,而是逐渐升级的。
同理 len 记录的是当前节点的长度,lensize 记录的是 len 的长度。
headersize 就是前文提到的两个 size 之和。
encoding 就是这个节点的数据类型。这里注意一下 encoding 的类型只包括整数和字符串。
p 节点的指针,不用过多的解释。

需要注意一点,因为每个节点都保存了前一个节点的长度,如果发生了更新或者删除节点,则这个节点之后的数据也需要修改,有一种最坏的情况就是如果每个节点都处于需要扩容的零界点,就会造成这个节点之后的节点都要修改 size 这个参数,引发连锁反应。这个时候就是 压缩链表最坏的时间复杂度 O(n^2)。 不过所有节点都处于临界值,这样的概率可以说比较小。

总结

至此Redis的基本数据结构就介绍完了。我们可以看到 Redis 对内存的使用真是“斤斤计较”,对于内存是使用特别节约。同时 Redis 作为一个单线程应用,不用考虑并发的问题,将很多类似 size 或者 length 的参数暴露出来,将很多 O(n) 的操作降低为 O(1)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/382371.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在Redis客户端设置连接密码 并演示密码登录

我们先连接到Redis服务 然后 我们要输入 CONFIG SET requirepass “新密码” 例如 CONFIG SET requirepass "A15167"这样 密码就被设置成立 A15167 我们 输入 AUTH 密码 例如 AUTH A15167这里 返回OK说明成功了 然后 我们退出在登录就真的需要 redis-cli -h IP地…

redis源码剖析(五)—— 字符串,列表,哈希,集合,有序集合

文章目录对象REDIS_STRING (字符串)REDIS_LIST 列表REDIS_SET (集合)REDIS_ZSET (有序集合)REDIS_HASH (hash表)int refcount(引用计数器)unsigned lru:REDIS_LRU_BITS对象 对于 Re…

redis源码剖析(六)—— Redis 数据库、键过期的实现

文章目录数据库的实现数据库读写操作键的过期实现数据库的实现 我们先看代码 server.h/redisServer struct redisServer{...//保存 db 的数组redisDb *db;//db 的数量int dbnum;... }再看redisDb的代码: typedef struct redisDb {dict *dict; /*…

linux中错误总结归纳

1.使用gcc编译C文件,C文件在for循环语句中出现变量定义 编译器提示错误:“for”loop initial declarations are only allowed in C99 mode. note:use option -stdc99or-stdgnu99 to compile; 原因:gcc的标准是基于c89的,c89不能在…

makefile内容小结

makefile中每个功能主要分为三部分:目标,依赖条件和命令语句 1.支持对比更新的Makefile写法(只会编译文件时.o文件和.c文件时间不一致的文件) 2.使用makefile自动变量和自定义变量的makefile写法 其中:这三个符号为ma…

事务隔离级别动图演示

事务的基本要素(ACID) 原子性(Atomicity) 事务开始后所有操作,要么全部做完,要么全部不做,不可能停滞在中间环节。事务执行过程中出错,会回滚到事务开始前的状态,所有的…

linux中的man文档结构

使用命令 man chapter章节号查找的内容

linux文件操作相关函数

(1)stat函数:显示文件的相关信息(类似于 ls -l的感觉) 头文件及函数原型: 函数参数:path:文件的路径,buf是指待写入的文件信息,fd:表示文件描述符; stat,fstat,lstat三者…

linux目录操作函数

(1)chdir函数:修改当前进程的路径 函数头文件及原型: 参数:要修改的文件路径或文件描述符(一般是当前空闲最小的) 返回值:成功(0),失败&#xff0…

linux中的dup和fcntl的用法

(1)dup函数:文件描述符的拷贝 函数头文件及函数原型: 参数:原来的文件描述符,新的文件描述符,标志位; 返回值:成功(返回新的文件描述符)失败&…

使用dup2实现重定向到屏幕终端遇到问题

参考博客:https://blog.csdn.net/qq_26093511/article/details/53255970 参考博客:https://blog.csdn.net/db199410/article/details/52335450#commentBox 1.要解决的问题 通过复制文件描述符来实现文件重定向问题。 2.实现代码 2.代码输出 按照原来的…

linux操作系统之exec函数族

当我们想在进程中执行另外一个函数或程序时,可以使用exec函数。进程调用exec函数,则该进程中用户空间所有代码和数据会完全被新程序替换,但是不会创建新进程,因此进程id不会发生改变。 函数族的头文件:unistd.h l:li…

linux操作系统之子进程回收函数wait和waitpid函数小结

一个进程在终止时会关闭所有的文件描述符,释放用户空间分配的内存,但是它的PCB还保留着,内核在其中还保留着进程的一些信息:如果正常终止,则保留着退出状态;如果异常终止则保存着导致进程种植的信号。 在父…

linux操作系统进程间通信IPC之管道pipe及FIFO

linux环境下,各进程相互独立,如果想要交换两个进程之间的数据,需要通过内核,在内存中提供一个缓存区,一个进程往缓存区中写数据,一个往缓存区读数据,内核提供的这种机制称为进程间通信(IPC&…

linux操作系统进程间通信IPC之共享存储映射

(1)文件存储映射I/O(Memory-mapped I/O) 一个磁盘文件与存储空间中的一个缓存区相对应,这样可以在不适合read/write函数的情况下,使用地址(指针)完成I/O操作。具体实现通过内核指定一…

linux操作系统之信号

(1)信号的概念 信号的特点:简单,不能携带大量信息,满足某种特定条件才触发。 信号的机制;“软中断”,通过软件方式实现,具有很强的延时性。每个进程收到的信号,都由内核负…

linux操作系统信号捕捉函数之sigaction用法小结

&#xff08;1&#xff09;sigaction函数&#xff1a;注册一个信号捕捉函数&#xff08;不参与捕捉信号&#xff0c;信号由内核捕捉&#xff09;&#xff0c;并修改原来的信号处理动作 &#xff08;2&#xff09;函数原型及头文件 头文件&#xff1a;#include<signal.h>…

redis源码剖析(十五)——客户端思维导图整理

redis源码剖析&#xff08;十五&#xff09;——客户端执行逻辑结构整理 加载略慢

linux操作系统信号捕捉函数之回调函数小结

&#xff08;1&#xff09;signal 信号捕捉函数&#xff1a;注册一个信号捕捉函数&#xff08;不参与捕捉&#xff0c;那是内核的事情&#xff09; 函数实现&#xff1a; typedef void(*sighandler_t)(int); //声明了一个函数指针&#xff08;代表着一类函数&#xff1a;参…