【阵列信号处理】空间匹配滤波器、锥形/非锥形最佳波束成形器、样本矩阵反演 (SMI) 研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

空间匹配滤波器(Spatial Matched Filter)是一种用于信号处理的滤波器。它的原理是通过将输入信号与预先存储的参考信号进行相关运算,从而增强目标信号并抑制噪声。空间匹配滤波器在雷达、声纳等领域广泛应用,用于目标检测、目标跟踪等任务。

锥形最佳波束成形器(Conical Beamformer)是一种用于信号处理的波束成形器。它通过调整传感器阵列中各个传感器的权重,使得阵列对特定方向的信号响应最大化,从而实现对目标信号的增强。锥形最佳波束成形器在无线通信、声纳等领域常用于信号接收和目标定位。

非锥形最佳波束成形器(Non-Conical Beamformer)是一种波束成形器的变种。与锥形最佳波束成形器不同的是,非锥形最佳波束成形器可以实现对多个目标信号的增强,而不仅仅是单个方向的信号。非锥形最佳波束成形器在多目标检测和定位等任务中具有重要应用。

样本矩阵反演(Sample Matrix Inversion)是一种用于信号处理的方法。它通过对接收到的信号进行采样和矩阵运算,估计信号源的位置和强度。样本矩阵反演在无线通信、雷达等领域常用于信号定位和信号源分离。

以上这些方法在阵列信号处理中都有广泛的研究和应用,它们可以提高信号的质量和可靠性,从而提升系统性能。

📚2 运行结果

 

 

 

 

 

 

 

 

 

 部分代码:

% We illustrate the use of tapers with the spatial matched filter for the extraction
% of a radar signal in the presence of a jamming interference source using a ULA with M = 20
% elements with $\lambda/2$ spacing. The desired radar signal is known as a target and is 
% present for only one sample in time. Here the target signal is at time sample (range gate)
% n = 100 and is at $\phi_s = 0^{\circ}$ with an array SNR of 20 dB. The jammer transmits a 
% high-power, uncorrelated waveform (white noise). The angle of the jammer is $\phi_i = 20^{\circ}$
% and its strength is 40 dB. The additive, sensor thermal noise has unit power (0 dB).
%
% Copyright 2016 - 2026, Ilias S. Konsoulas.

%% Workspace Initialization.
clc; clear; close all;

%% Signal Definitions.
M      = 20;       % Number of Array Elements.
N      = 200;      % Number of Signal Samples.
n      = 1:N;      % Sample Index Vector.
lambda = 1;        % Incoming Signal Wavelength in (m).
d      = lambda/2; % Interelement Distance in (m).
SNR    = 20;       % target volatege signal array SNR in dBs.
INR    = 40;       % interference array SNR in dBs.
phi_s  = 0;        % target azimuth angle in degrees.
phi_i  = 20;       % interference azimuth angle in degrees.

u_s  = (d/lambda)*sin(phi_s*pi/180); % Target Normalized Spatial Frequency.
u_si = (d/lambda)*sin(phi_i*pi/180); % Jammer Normalized Spatial Frequency.

s = zeros(M,N);
s(:,100) = 10^(SNR/20)*exp(-1i*2*pi*u_s*(0:M-1).')/sqrt(M);

% Uncorrelated unit power thermal noise samples drawn from a complex Gaussian distribution
w = (randn(M,N)+1i*randn(M,N))/sqrt(2);

% The interference (jammer) vector is generated by:
% v_i = exp(-1i*pi*[0:M-1]'*sin(phi_i*pi/180))/sqrt(M); mentioned in the book is wrong.
v_i = exp(-1i*2*pi*u_si*(0:M-1).')/sqrt(M);
i_x = 10^(INR/20)*v_i*(randn(1,N)+1i*randn(1,N))/sqrt(2);

%The three signals are added to produce the overall array signal
x = s + i_x + w;

% Two beamformers (steered to phi = 0.) are applied to the resulting array returns: a spatial matched
% filter and a tapered beamformer with a -50-dB sidelobe level. The resulting beamformer output
% signals are shown in Figure 11.15. The spatial matched filter is unable to reduce the jammer
% sufficiently to observe the target signal at n = 100. However, the tapered beamformer is able
% to attenuate the jammer signal below the thermal noise level and the target is easily extracted.
% The target signal is approximately 18.5 dB with the -1.5 dB loss due to the tapering loss in (11.2.24).

%% Spatial Matched Filter or Steering Vector Beamformer.
c_mf = exp(-1i*2*pi*u_s*(0:M-1).')/sqrt(M);   

% Spatial Dolph-Chebychev Window of length M = 20 with -50 dB sidelobe attenuation:
w = chebwin(M,50);

% Compute the Combined Taper by taking the Hadamard product:
c_mft = c_mf.*w;

% Normalize the combined taper vector:

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]罗日成,李卫国,李成榕.基于阵列信号处理的变压器内局部放电源多目标定位方法[J].电网技术, 2006, 30(1):5.DOI:10.3321/j.issn:1000-3673.2006.01.013.

[2]张小飞,汪飞,徐大专.阵列信号处理的理论和应用[M].国防工业出版社,2010.

[3]罗景青,保铮.雷达阵列信号处理技术的新发现(一)[J].现代雷达, 1993, 15(2):11.DOI:CNKI:SUN:XDLD.0.1993-02-015.

[4]马友科,宋万杰,吴顺君,等.基于多DSP的雷达阵列信号处理系统[J].雷达科学与技术, 2009, 7(2):4.DOI:10.3969/j.issn.1672-2337.2009.02.008.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/34812.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

九耶丨阁瑞钛伦特-产品经理面试题

在产品上线后,会着重观察6类指标: 1、活跃用户指标 衡量APP用户规模的指标,一个产品是否成功,如果只看一个指标,那么这个指标一定是活跃用户数。 日活(DAU):一天内日均活跃设备数(去重,每个公…

关于使用pycharm遇到只能使用unittest方式运行,无法直接选择Run

相信大家可能都遇到过这个问题,使用pycharm直接运行脚本的时候,只能选择unittest的方式,能愁死个人 经过几次各种尝试无果之后,博主就放弃死磕了,原谅博主是个菜鸟 后来遇到这样的问题,往往也就直接使用cm…

Python爬虫-抓取的目标数据为#x开头,怎么解决?

前言 本文是该专栏的第4篇,后面会持续分享python爬虫案例干货,记得关注。 在做爬虫项目的时候,有时候抓取的平台目标数据为&#x开头,如下图所示: 浏览器显示的正常数据,但通过爬虫协议获取到的网页源码数据却是以&#x开头的隐藏数据,遇到这种情况,爬虫需要怎么处…

【Linux从入门到精通】文件I/O操作(C语言vs系统调用)

文章目录 一、C语言的文件IO相关函数操作 1、1 fopen与fclose 1、2 fwrite 1、3 fprintf与fscanf 1、4 fgets与fputs 二、系统调用相关接口 2、1 open与close 2、2 write和read 三、简易模拟实现cat指令 四、总结 🙋‍♂️ 作者:Ggggggtm 🙋‍…

Golang bitset 基本使用

安装: go get github.com/bits-and-blooms/bitset下面代码把fmtx换成fmt就行 //------------基本操作------------//构建一个64bit长度的bitsetb : bitset.New(64)//放入一个数b.Set(10)fmtx.Println("add-10:", b.DumpAsBits()) // 0000000…

针对英特尔酷睿 CPU 优化,Canonical 发布 Ubuntu 实时内核

导读Canonical 今天宣布针对支持时序协调运算(TCC)和时间敏感网络(IEEE TSN)的英特尔酷睿处理器,推出优化版实时 Ubuntu 内核。 Canonical 于今年 2 月宣布,为购买 Ubuntu Pro 订阅,使用代号为 …

OPENCV C++(七)霍夫线检测+找出轮廓和外接矩形+改进旋转

霍夫线检测 vector<Vec2f> lines1;HoughLines(canny_mat, lines1, 1, CV_PI / 180.0,90 );//45可以检测里面两条线 80检测出外边两条线 定义存放输出线的向量 此向量输出有<距离&#xff0c;角度> 因为检测的原理就是在变换霍夫空间里面去检测的&#xff0c;这里可…

ESP8266(RTOS SDK)内嵌网页以实现WEB配网以及数据交互

【本文发布于https://blog.csdn.net/Stack_/article/details/131997098&#xff0c;未经允许不得转载&#xff0c;转载须注明出处】 1、执行make menuconfig&#xff0c;将http头由512改为更大的值&#xff0c;否则用电脑浏览器访问正常&#xff0c;但用手机浏览器访问会因为ht…

基于weka手工实现K-means

一、K-means聚类算法 K均值聚类&#xff08;K-means clustering&#xff09;是一种常见的无监督学习算法&#xff0c;用于将数据集中的样本划分为K个不同的类别或簇。它通过最小化样本点与所属簇中心点之间的距离来确定最佳的簇划分。 K均值聚类的基本思想如下&#xff1a; …

【快应用】list组件如何区分滑动的方向?

【关键词】 list组件、滑动方向、scroll 【问题背景】 有cp反馈list这个组件在使用的时候&#xff0c;不知道如何区分它是上滑还是下滑。 【问题分析】 list组件除了通用事件之外&#xff0c;还提供了scroll、scrollbottom、scrolltop、scrollend、scrolltouchup事件&#x…

UIE在实体识别和关系抽取上的实践

近期有做信息抽取的需求&#xff0c;UIE在信息抽取方面效果不错。 模型准备 huggingface上下载UIE模型&#xff1a;PaddlePaddle/uie-base Hugging Face 点击“Clone Repository”&#xff0c;确定git clone的链接 其中包含大文件&#xff0c;需要在windows安装git-lfs&am…

九、多态(1)

本章概要 向上转型回顾 忘掉对象类型 转机 方法调用绑定产生正确的行为可扩展性陷阱&#xff1a;“重写”私有方法陷阱&#xff1a;属性与静态方法 多态是面向对象编程语言中&#xff0c;继数据抽象和继承之外的第三个重要特性。 多态提供了另一个维度的接口与实现分离&…

C++_模板初阶

在面向对象中&#xff0c;我们可以使用重载来实现多态。 但是问题在于&#xff0c;重载的函数仅仅是类型不同&#xff0c;代码复用率比较低&#xff0c;只要有新的类型出现时&#xff0c;就要增加对应的函数&#xff1b;另一方面它的代码可维护性比较低&#xff0c;一个出错可…

java实现文件的下载

系统日志的获取不可能每次都登录服务器&#xff0c;所以在页面上能够下载系统运行的日志是必须的 如何来实现日志的下载&#xff0c;这样的一个功能 前端我们用到的是window.open(...)这样可以发送一个get请求到后台 后台接收到get请求之后&#xff0c;如何实现对文件的下载 R…

ubuntu中redis+mysql安装使用

pip -V 回车&#xff08;大写V&#xff09;&#xff1a;python包库安装路径 python -m site: python查找路径 1、redis ubuntu安装redis System has not been booted with systemd as init system (PID 1). Cant operate&#xff1b;该问题是systemctl start redis报错&#…

ZLMediaKit(webrtc)在linux上(CentOS7)部署与启动

一.ZLMediaKit(webrtc)在CentOS7部署与启动 # 1. 卸载旧版本 yum remove git # 2. 安装 yum 源的 Git 版本 yum install -y git # 3. 查看版本 git version # 输出 git version 1.8.3.1配置全局环境变量 # 1. 编辑配置文件 vim /etc/profile # 2. 在 /etc/profile 文件中末尾…

用 Rufus 制作 Ubuntu 系统启动盘时,选择分区类型为MBR还是GPT?

当使用 Rufus 制作 Ubuntu 系统启动盘时&#xff0c;您可以根据您的需求选择分区类型&#xff0c;MBR&#xff08;Master Boot Record&#xff09;还是 GPT&#xff08;GUID Partition Table&#xff09;。 MBR 是传统的分区表格式&#xff0c;适用于大多数旧版本的操作系统和旧…

2023/08/13_____JMM JAVA Memory Model JAVA内存模型

JMM JAVA Memory Model java内存模型 作用&#xff1a;缓存一致性协议&#xff0c;用于定义数据读写的规则&#xff08;遵守&#xff0c;找到这个规则&#xff09; JMM定义了线程2工作内存和主内存之间的抽象关系&#xff1a;线程之间的共享变量存储在主内存&#xff08;main …

TLS协议

目录 什么是TLS协议&#xff1f; TLS的基本流程&#xff1f; 两种密钥交换算法&#xff1f; 基于ECDHE密钥交换算法的TLS握手过程&#xff1f; 基于RSA密钥交换算法的TLS握手过程&#xff1f; 基于RSA的握手和基于ECDHE的握手有什么区别&#xff1f; 什么是前向保密&…

tp6 v3微信退款

/*** Notes:退款* param $out_trade_no 支付时候订单号&#xff08;order表 original_bn&#xff09;两个参数选一个这个要选对* param $out_refund_no 退款订单号* param $total 订单金额* param $refund 退款金额* Time: 2023-08-10*/public function refundMoney($out_trade…