算法与数据结构(二十二)动态规划解题套路框架

动态规划解题套路框架

此文只在个人总结 labuladong 动态规划框架,仅限于学习交流,版权归原作者所有;

动态规划问题(Dynamic Programming)应该是很多读者头疼的,不过这类问题也是最具有技巧性,最有意思的。本书使用了整整一个章节专门来写这个算法,动态规划的重要性也可见一斑。

本文解决几个问题:

动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?

刷题刷多了就会发现,算法技巧就那几个套路,我们后续的动态规划系列章节,都在使用本文的解题框架思维,如果你心里有数,就会轻松很多。所以本文放在第一章,来扒一扒动态规划的裤子,形成一套解决这类问题的思维框架,希望能够成为解决动态规划问题的一部指导方针。本文就来讲解该算法的基本套路框架,下面上干货。

首先,动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不过在计算机问题上应用比较多,比如说让你求最长递增子序列呀,最小编辑距离呀等等。

既然是要求最值,核心问题是什么呢?求解动态规划的核心问题是穷举。因为要求最值,肯定要把所有可行的答案穷举出来,然后在其中找最值呗。

注:

  1. 动态规划一般形式是求最值
  2. 动态规划的核心问题是穷举

动态规划这么简单,就是穷举就完事了?我看到的动态规划问题都很难啊!

首先,虽然动态规划的核心思想就是穷举求最值,但是问题可以千变万化,穷举所有可行解其实并不是一件容易的事,需要你熟练掌握递归思维,只有列出正确的「状态转移方程」,才能正确地穷举。而且,你需要判断算法问题是否具备「最优子结构」,是否能够通过子问题的最值得到原问题的最值。另外,动态规划问题存在「重叠子问题」,如果暴力穷举的话效率会很低,所以需要你使用「备忘录」或者「DP table」来优化穷举过程,避免不必要的计算。

注:动态规划三要素:

  1. 列出状态转移方程——来正确的穷举;
  2. 判断算法问题是否具备 最优子结构——通过子问题来得到原问题;
  3. 找到重叠子问题——通过 备忘录或者 dp Table 来优化穷举;

以上提到的 重叠子问题、最优子结构、状态转移方程 就是动态规划三要素。具体什么意思等会会举例详解,但是在实际的算法问题中,写出状态转移方程是最困难的,这也就是为什么很多朋友觉得动态规划问题困难的原因,我来提供我总结的一个思维框架,辅助你思考状态转移方程:

明确 base case -> 明确「状态」-> 明确「选择」 -> 定义 dp 数组/函数的含义

注:

  1. 状态
  2. 选择
  3. 定义 dp 数组/函数的含义;

按上面的套路走,最后的解法代码就会是如下的框架:

# 自顶向下递归的动态规划
def dp(状态1, 状态2, ...):for 选择 in 所有可能的选择:# 此时的状态已经因为做了选择而改变result = 求最值(result, dp(状态1, 状态2, ...))return result# 自底向上迭代的动态规划
# 初始化 base case
dp[0][0][...] = base case
# 进行状态转移
for 状态1 in 状态1的所有取值:for 状态2 in 状态2的所有取值:for ...dp[状态1][状态2][...] = 求最值(选择1,选择2...)

下面通过斐波那契数列问题和凑零钱问题来详解动态规划的基本原理。前者主要是让你明白什么是重叠子问题(斐波那契数列没有求最值,所以严格来说不是动态规划问题),后者主要举集中于如何列出状态转移方程。

一、斐波那契数列

力扣第 509 题「斐波那契数open in new window」就是这个问题,请读者不要嫌弃这个例子简单,只有简单的例子才能让你把精力充分集中在算法背后的通用思想和技巧上,而不会被那些隐晦的细节问题搞的莫名其妙。想要困难的例子,接下来的动态规划系列里有的是。

力扣第 509 题「斐波那契数open in new window」就是这个问题,请读者不要嫌弃这个例子简单,只有简单的例子才能让你把精力充分集中在算法背后的通用思想和技巧上,而不会被那些隐晦的细节问题搞的莫名其妙。想要困难的例子,接下来的动态规划系列里有的是。

1、暴力递归

斐波那契数列的数学形式就是递归的,写成代码就是这样:

int fib(int N) {if (N == 1 || N == 2) return 1;return fib(N - 1) + fib(N - 2);
}

这个不用多说了,学校老师讲递归的时候似乎都是拿这个举例。我们也知道这样写代码虽然简洁易懂,但是十分低效,低效在哪里?假设 n = 20,请画出递归树:
在这里插入图片描述

Tip

但凡遇到需要递归的问题,最好都画出递归树,这对你分析算法的复杂度,寻找算法低效的原因都有巨大帮助。

这个递归树怎么理解?就是说想要计算原问题 f(20),我就得先计算出子问题 f(19)f(18),然后要计算 f(19),我就要先算出子问题 f(18)f(17),以此类推。最后遇到 f(1) 或者 f(2) 的时候,结果已知,就能直接返回结果,递归树不再向下生长了。

递归算法的时间复杂度怎么计算?就是用子问题个数乘以解决一个子问题需要的时间

首先计算子问题个数,即递归树中节点的总数。显然二叉树节点总数为指数级别,所以子问题个数为 O(2^n)。

然后计算解决一个子问题的时间,在本算法中,没有循环,只有 f(n - 1) + f(n - 2) 一个加法操作,时间为 O(1)。

所以,这个算法的时间复杂度为二者相乘,即 O(2^n),指数级别,爆炸。

观察递归树,很明显发现了算法低效的原因:存在大量重复计算,比如 f(18) 被计算了两次,而且你可以看到,以 f(18) 为根的这个递归树体量巨大,多算一遍,会耗费巨大的时间。更何况,还不止 f(18) 这一个节点被重复计算,所以这个算法及其低效。

这就是动态规划问题的第一个性质:重叠子问题。下面,我们想办法解决这个问题。

2、带备忘录的递归解法

明确了问题,其实就已经把问题解决了一半。即然耗时的原因是重复计算,那么我们可以造一个「备忘录」,每次算出某个子问题的答案后别急着返回,先记到「备忘录」里再返回;每次遇到一个子问题先去「备忘录」里查一查,如果发现之前已经解决过这个问题了,直接把答案拿出来用,不要再耗时去计算了。

一般使用一个数组充当这个「备忘录」,当然你也可以使用哈希表(字典),思想都是一样的。

int fib(int N) {// 备忘录全初始化为 0int[] memo = new int[N + 1];// 进行带备忘录的递归return dp(memo, N);
}// 带着备忘录进行递归
int dp(int[] memo, int n) {// base caseif (n == 0 || n == 1) return n;// 已经计算过,不用再计算了if (memo[n] != 0) return memo[n];memo[n] = dp(memo, n - 1) + dp(memo, n - 2);return memo[n];
}

注:带备忘录的递归解法套路:

  1. 自顶向下的递归;
  2. 备忘录解决重叠子问题的无效计算;

现在,画出递归树,你就知道「备忘录」到底做了什么。

在这里插入图片描述

实际上,带「备忘录」的递归算法,把一棵存在巨量冗余的递归树通过「剪枝」,改造成了一幅不存在冗余的递归图,极大减少了子问题(即递归图中节点)的个数。

在这里插入图片描述

递归算法的时间复杂度怎么计算?就是用子问题个数乘以解决一个子问题需要的时间

子问题个数,即图中节点的总数,由于本算法不存在冗余计算,子问题就是 f(1), f(2), f(3)f(20),数量和输入规模 n = 20 成正比,所以子问题个数为 O(n)。

解决一个子问题的时间,同上,没有什么循环,时间为 O(1)。

所以,本算法的时间复杂度是 O(n),比起暴力算法,是降维打击。

至此,带备忘录的递归解法的效率已经和迭代的动态规划解法一样了。实际上,这种解法和常见的动态规划解法已经差不多了,只不过这种解法是「自顶向下」进行「递归」求解,我们更常见的动态规划代码是「自底向上」进行「递推」求解。

啥叫「自顶向下」?注意我们刚才画的递归树(或者说图),是从上向下延伸,都是从一个规模较大的原问题比如说 f(20),向下逐渐分解规模,直到 f(1)f(2) 这两个 base case,然后逐层返回答案,这就叫「自顶向下」。

啥叫「自底向上」?反过来,我们直接从最底下、最简单、问题规模最小、已知结果的 f(1)f(2)(base case)开始往上推,直到推到我们想要的答案 f(20)。这就是「递推」的思路,这也是动态规划一般都脱离了递归,而是由循环迭代完成计算的原因。

注:从时间复杂度和空间复杂度的角度上,自顶向下的带备忘录的递归解法 和 自底向上的动态规划 一样,只不过前者都 递归,后者走 递推

3、dp 数组的迭代(递推)解法

有了上一步「备忘录」的启发,我们可以把这个「备忘录」独立出来成为一张表,通常叫做 DP table,在这张表上完成「自底向上」的推算岂不美哉!

int fib(int N) {if (N == 0) return 0;int[] dp = new int[N + 1];// base casedp[0] = 0; dp[1] = 1;// 状态转移for (int i = 2; i <= N; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[N];
}

在这里插入图片描述

画个图就很好理解了,而且你发现这个 DP table 特别像之前那个「剪枝」后的结果,只是反过来算而已。实际上,带备忘录的递归解法中的「备忘录」,最终完成后就是这个 DP table,所以说这两种解法其实是差不多的,大部分情况下,效率也基本相同。

这里,引出「状态转移方程」这个名词,实际上就是描述问题结构的数学形式:

在这里插入图片描述

为啥叫「状态转移方程」?其实就是为了听起来高端。

f(n) 的函数参数会不断变化,所以你把参数 n 想做一个状态,这个状态 n 是由状态 n - 1 和状态 n - 2 转移(相加)而来,这就叫状态转移,仅此而已。

注:动态规划的状态,就是 dp 数组的参数 n;

你会发现,上面的几种解法中的所有操作,例如 return f(n - 1) + f(n - 2)dp[i] = dp[i - 1] + dp[i - 2],以及对备忘录或 DP table 的初始化操作,都是围绕这个方程式的不同表现形式。

可见列出「状态转移方程」的重要性,它是解决问题的核心,而且很容易发现,其实状态转移方程直接代表着暴力解法。

千万不要看不起暴力解,动态规划问题最困难的就是写出这个暴力解,即状态转移方程

只要写出暴力解,优化方法无非是用备忘录或者 DP table,再无奥妙可言。

这个例子的最后,讲一个细节优化。

细心的读者会发现,根据斐波那契数列的状态转移方程,当前状态 n 只和之前的 n-1, n-2 两个状态有关,其实并不需要那么长的一个 DP table 来存储所有的状态,只要想办法存储之前的两个状态就行了。

所以,可以进一步优化,把空间复杂度降为 O(1)。这也就是我们最常见的计算斐波那契数的算法:

int fib(int n) {if (n == 0 || n == 1) {// base casereturn n;}// 分别代表 dp[i - 1] 和 dp[i - 2]int dp_i_1 = 1, dp_i_2 = 0;for (int i = 2; i <= n; i++) {// dp[i] = dp[i - 1] + dp[i - 2];int dp_i = dp_i_1 + dp_i_2;// 滚动更新dp_i_2 = dp_i_1;dp_i_1 = dp_i;}return dp_i_1;
}

这一般是动态规划问题的最后一步优化,如果我们发现每次状态转移只需要 DP table 中的一部分,那么可以尝试缩小 DP table 的大小,只记录必要的数据,从而降低空间复杂度。

上述例子就相当于把 DP table 的大小从 n 缩小到 2。我会在后文 对动态规划发动降维打击 进一步讲解这个压缩空间复杂度的技巧,一般来说用来把一个二维的 DP table 压缩成一维,即把空间复杂度从 O(n^2) 压缩到 O(n)。

注:上文演示了从 递归解法 -> 带备忘录的递归解法 -> 自底向上的递推解法,其中 状态 就是 dp Table 中的参数;

有人会问,动态规划的另一个重要特性「最优子结构」,怎么没有涉及?下面会涉及。斐波那契数列的例子严格来说不算动态规划,因为没有涉及求最值,以上旨在说明重叠子问题的消除方法,演示得到最优解法逐步求精的过程。下面,看第二个例子,凑零钱问题。

二、凑零钱问题

这是力扣第 322 题「零钱兑换open in new window」:

给你 k 种面值的硬币,面值分别为 c1, c2 ... ck,每种硬币的数量无限,再给一个总金额 amount,问你最少需要几枚硬币凑出这个金额,如果不可能凑出,算法返回 -1 。算法的函数签名如下:

// coins 中是可选硬币面值,amount 是目标金额
int coinChange(int[] coins, int amount);

比如说 k = 3,面值分别为 1,2,5,总金额 amount = 11。那么最少需要 3 枚硬币凑出,即 11 = 5 + 5 + 1。

你认为计算机应该如何解决这个问题?显然,就是把所有可能的凑硬币方法都穷举出来,然后找找看最少需要多少枚硬币。

1、暴力递归

首先,这个问题是动态规划问题,因为它具有「最优子结构」的。要符合「最优子结构」,子问题间必须互相独立。啥叫相互独立?你肯定不想看数学证明,我用一个直观的例子来讲解。

比如说,假设你考试,每门科目的成绩都是互相独立的。你的原问题是考出最高的总成绩,那么你的子问题就是要把语文考到最高,数学考到最高…… 为了每门课考到最高,你要把每门课相应的选择题分数拿到最高,填空题分数拿到最高…… 当然,最终就是你每门课都是满分,这就是最高的总成绩。

得到了正确的结果:最高的总成绩就是总分。因为这个过程符合最优子结构,「每门科目考到最高」这些子问题是互相独立,互不干扰的。

但是,如果加一个条件:你的语文成绩和数学成绩会互相制约,不能同时达到满分,数学分数高,语文分数就会降低,反之亦然。

这样的话,显然你能考到的最高总成绩就达不到总分了,按刚才那个思路就会得到错误的结果。因为「每门科目考到最高」的子问题并不独立,语文数学成绩户互相影响,无法同时最优,所以最优子结构被破坏。

回到凑零钱问题,为什么说它符合最优子结构呢?假设你有面值为 1, 2, 5 的硬币,你想求 amount = 11 时的最少硬币数(原问题),如果你知道凑出 amount = 10, 9, 6 的最少硬币数(子问题),你只需要把子问题的答案加一(再选一枚面值为 1, 2, 5 的硬币),求个最小值,就是原问题的答案。因为硬币的数量是没有限制的,所以子问题之间没有相互制,是互相独立的。

注:这里有个很重要的前提,就是硬币的数量是没有限制的,子问题之间没有相互制约,是相互独立的;

Tip

关于最优子结构的问题,后文 动态规划答疑篇 还会再举例探讨。

那么,既然知道了这是个动态规划问题,就要思考如何列出正确的状态转移方程?

1、确定 base case,这个很简单,显然目标金额 amount 为 0 时算法返回 0,因为不需要任何硬币就已经凑出目标金额了。

2、确定「状态」,也就是原问题和子问题中会变化的变量。由于硬币数量无限,硬币的面额也是题目给定的,只有目标金额会不断地向 base case 靠近,所以唯一的「状态」就是目标金额 amount

3、确定「选择」,也就是导致「状态」产生变化的行为。目标金额为什么变化呢,因为你在选择硬币,你每选择一枚硬币,就相当于减少了目标金额。所以说所有硬币的面值,就是你的「选择」。

4、明确 dp 函数/数组的定义。我们这里讲的是自顶向下的解法,所以会有一个递归的 dp 函数,一般来说函数的参数就是状态转移中会变化的量,也就是上面说到的「状态」;函数的返回值就是题目要求我们计算的量。就本题来说,状态只有一个,即「目标金额」,题目要求我们计算凑出目标金额所需的最少硬币数量。

注:

  1. base case:就是 dp 数组的边界条件;
  2. 状态:把待求问题的解 作为状态是一个很好的思路,比如这道题的 凑出目标金额 amount 的最少硬币,硬币数量无限,因此,本文就只有一个状态,只有 amount 作为状态了;
  3. 选择:导致状态发生变化的行为,本题就是选硬币;
  4. dp 数组的含义:我们这里讲的是自顶向下的解法,所以会有一个递归的 dp 函数,一般来说函数的参数就是状态转移中会变化的量,也就是上面说到的「状态」;函数的返回值就是题目要求我们计算的量

所以我们可以这样定义 dp 函数:dp(n) 表示,输入一个目标金额 n,返回凑出目标金额 n 所需的最少硬币数量

搞清楚上面这几个关键点,解法的伪码就可以写出来了:

// 伪码框架
int coinChange(int[] coins, int amount) {// 题目要求的最终结果是 dp(amount)return dp(coins, amount)
}// 定义:要凑出金额 n,至少要 dp(coins, n) 个硬币
int dp(int[] coins, int n) {// 做选择,选择需要硬币最少的那个结果for (int coin : coins) {res = min(res, 1 + dp(coins, n - coin))}return res
}

根据伪码,我们加上 base case 即可得到最终的答案。显然目标金额为 0 时,所需硬币数量为 0;当目标金额小于 0 时,无解,返回 -1:

int coinChange(int[] coins, int amount) {// 题目要求的最终结果是 dp(amount)return dp(coins, amount)
}// 定义:要凑出金额 n,至少要 dp(coins, n) 个硬币
int dp(int[] coins, int amount) {// base caseif (amount == 0) return 0;if (amount < 0) return -1;int res = Integer.MAX_VALUE;for (int coin : coins) {// 计算子问题的结果int subProblem = dp(coins, amount - coin);// 子问题无解则跳过if (subProblem == -1) continue;// 在子问题中选择最优解,然后加一res = Math.min(res, subProblem + 1);}return res == Integer.MAX_VALUE ? -1 : res;
}

Note

这里 coinChangedp 函数的签名完全一样,所以理论上不需要额外写一个 dp 函数。但为了后文讲解方便,这里还是另写一个 dp 函数来实现主要逻辑。

另外,我经常看到有人问,子问题的结果为什么要加 1(subProblem + 1),而不是加硬币金额之类的。我这里统一提示一下,动态规划问题的关键是 dp 函数/数组的定义,你这个函数的返回值代表什么?你回过头去搞清楚这一点,然后就知道为什么要给子问题的返回值加 1 了。

至此,状态转移方程其实已经完成了,以上算法已经是暴力解法了,以上代码的数学形式就是状态转移方程:

在这里插入图片描述

至此,这个问题其实就解决了,只不过需要消除一下重叠子问题,比如 amount = 11, coins = {1,2,5} 时画出递归树看看:

在这里插入图片描述

递归算法的时间复杂度分析:子问题总数 x 解决每个子问题所需的时间

子问题总数为递归树的节点个数,但算法会进行剪枝,剪枝的时机和题目给定的具体硬币面额有关,所以可以想象,这棵树生长的并不规则,确切算出树上有多少节点是比较困难的。对于这种情况,我们一般的做法是按照最坏的情况估算一个时间复杂度的上界。

假设目标金额为 n,给定的硬币个数为 k,那么递归树最坏情况下高度为 n(全用面额为 1 的硬币),然后再假设这是一棵满 k 叉树,则节点的总数在 k^n 这个数量级。

接下来看每个子问题的复杂度,由于每次递归包含一个 for 循环,复杂度为 O(k),相乘得到总时间复杂度为 O(k^n),指数级别。

2、带备忘录的递归

类似之前斐波那契数列的例子,只需要稍加修改,就可以通过备忘录消除子问题:

class Solution {int[] memo;int coinChange(int[] coins, int amount) {memo = new int[amount + 1];// 备忘录初始化为一个不会被取到的特殊值,代表还未被计算Arrays.fill(memo, -666);return dp(coins, amount);}int dp(int[] coins, int amount) {if (amount == 0) return 0;if (amount < 0) return -1;// 查备忘录,防止重复计算if (memo[amount] != -666)return memo[amount];int res = Integer.MAX_VALUE;for (int coin : coins) {// 计算子问题的结果int subProblem = dp(coins, amount - coin);// 子问题无解则跳过if (subProblem == -1) continue;// 在子问题中选择最优解,然后加一res = Math.min(res, subProblem + 1);}// 把计算结果存入备忘录memo[amount] = (res == Integer.MAX_VALUE) ? -1 : res;return memo[amount];}
}

不画图了,很显然「备忘录」大大减小了子问题数目,完全消除了子问题的冗余,所以子问题总数不会超过金额数 n,即子问题数目为 O(n)。处理一个子问题的时间不变,仍是 O(k),所以总的时间复杂度是 O(kn)

3、dp 数组的迭代解法

当然,我们也可以自底向上使用 dp table 来消除重叠子问题,关于「状态」「选择」和 base case 与之前没有区别,dp 数组的定义和刚才 dp 函数类似,也是把「状态」,也就是目标金额作为变量。不过 dp 函数体现在函数参数,而 dp 数组体现在数组索引:

dp 数组的定义:当目标金额为 i 时,至少需要 dp[i] 枚硬币凑出

根据我们文章开头给出的动态规划代码框架可以写出如下解法:

int coinChange(int[] coins, int amount) {int[] dp = new int[amount + 1];// 数组大小为 amount + 1,初始值也为 amount + 1Arrays.fill(dp, amount + 1);// base casedp[0] = 0;// 外层 for 循环在遍历所有状态的所有取值for (int i = 0; i < dp.length; i++) {// 内层 for 循环在求所有选择的最小值for (int coin : coins) {// 子问题无解,跳过if (i - coin < 0) {continue;}dp[i] = Math.min(dp[i], 1 + dp[i - coin]);}}return (dp[amount] == amount + 1) ? -1 : dp[amount];
}

Info

为啥 dp 数组中的值都初始化为 amount + 1 呢,因为凑成 amount 金额的硬币数最多只可能等于 amount(全用 1 元面值的硬币),所以初始化为 amount + 1 就相当于初始化为正无穷,便于后续取最小值。为啥不直接初始化为 int 型的最大值 Integer.MAX_VALUE 呢?因为后面有 dp[i - coin] + 1,这就会导致整型溢出。

在这里插入图片描述

三、最后总结

第一个斐波那契数列的问题,解释了如何通过「备忘录」或者「dp table」的方法来优化递归树,并且明确了这两种方法本质上是一样的,只是自顶向下和自底向上的不同而已。

第二个凑零钱的问题,展示了如何流程化确定「状态转移方程」,只要通过状态转移方程写出暴力递归解,剩下的也就是优化递归树,消除重叠子问题而已。

如果你不太了解动态规划,还能看到这里,真得给你鼓掌,相信你已经掌握了这个算法的设计技巧。

计算机解决问题其实没有任何特殊的技巧,它唯一的解决办法就是穷举,穷举所有可能性。算法设计无非就是先思考“如何穷举”,然后再追求“如何聪明地穷举”。

列出状态转移方程,就是在解决“如何穷举”的问题。之所以说它难,一是因为很多穷举需要递归实现,二是因为有的问题本身的解空间复杂,不那么容易穷举完整。

备忘录、DP table 就是在追求“如何聪明地穷举”。用空间换时间的思路,是降低时间复杂度的不二法门,除此之外,试问,还能玩出啥花活?

之后我们会有一章专门讲解动态规划问题,如果有任何问题都可以随时回来重读本文,希望读者在阅读每个题目和解法时,多往「状态」和「选择」上靠,才能对这套框架产生自己的理解,运用自如。

接下来可阅读:

  1. 全文演化路径:从上而下的递归 -> 从上而下的带备忘录的递归 (备忘录解决重叠子问题的无效计算) -> 从下而上的递推(状态转移方程);

  2. 动态规划 4 要素:

    1. 状态:会变化的就是状态;

    2. 选择:导致状态发生变化的就是选择;

    3. dp数组:到底几维是根据状态来定的,比如0-1背包就是两倍,dp[i][w] 表示对于前 i 个物品,重量约束为 w 时候的最大价值;

    4. base case:就是 dp 数组的边界条件;

  3. 动态规划套路框架:

# 1. 自顶向下递归的动态规划
def dp(状态1, 状态2, ...):for 选择 in 所有可能的选择:# 此时的状态已经因为做了选择而改变result = 求最值(result, dp(状态1, 状态2, ...))return result# 2. 自底向上迭代的动态规划
# 初始化 base case
dp[0][0][...] = base case
# 进行状态转移
for 状态1 in 状态1的所有取值:for 状态2 in 状态2的所有取值:for ...dp[状态1][状态2][...] = 求最值(选择1,选择2...)

四、参考文献

  1. 动态规划解题套路框架

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/33012.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Arcgis将一个shp依照属性表导出为多个shp

# -*- coding:utf-8 -*-import arcpy import osfrom arcpy import env#env.workspace "./" #自己设置路径shp rC:\Users\Administrator\Desktop\Lake\xxx.shp #shp文件路径outpath r"C:\Users\Administrator\Desktop\Lake\fenli" #输出结果路径with arc…

使用Python和wxPython将图片转换为草图

导语: 将照片转换为艺术风格的草图是一种有趣的方式&#xff0c;可以为您的图像添加独特的效果。在本文中&#xff0c;我们将介绍如何使用Python编程语言和wxPython图形用户界面库来实现这一目标。我们将探讨如何使用OpenCV库将图像转换为草图&#xff0c;并使用wxPython创建一…

在线高精地图生成算法调研

1.HDMapNet 整体的网络架构如图所示&#xff0c;最终的Decoder输出三个分支&#xff0c;一个语义分割&#xff0c;一个embedding嵌入分支&#xff0c;一个方向预测。然后通过后处理将这些信息处理成向量化的道路表示。 img2bev的方式之前有IPM&#xff0c;通过假设地面的高度都…

面试热题(三数之和)

给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复的三元组。 输入&…

[保研/考研机试] KY35 最简真分数 北京大学复试上机题 C++实现

题目链接&#xff1a; 最简真分数https://www.nowcoder.com/share/jump/437195121691719749588 描述 给出n个正整数&#xff0c;任取两个数分别作为分子和分母组成最简真分数&#xff0c;编程求共有几个这样的组合。 输入描述&#xff1a; 每组包含n&#xff08;n<600&…

微信小程序实现当前页面更新上一个页面

日常项目中需要实现的一个价格脱敏功能&#xff1a;通过点击页面二中的查看完整信息 点击回退按钮实现页面一中的价格显露出来 通过查询了大量资料发现 大多数都是通过调用上一个接口的onload 或者onshow 实现视图更新 经测试后 发现 无法实现 只能更改数据 无法更新视图 实现…

算能BM1684X部署手写数字识别模型

大致流程--------------------------------------------------------------- 参考《sophon-sail_zh》 移植步骤------------------------------------------------------------------------ 首先搭建好自己的网络模型&#xff0c;并导出为onnx格式--具体可以参照--> GitH…

大语言模型之一 Attention is all you need ---Transformer

大语言模型已经在很多领域大显身手&#xff0c;其应用包括只能写作、音乐创作、知识问答、聊天、客服、广告文案、论文、新闻、小说创作、润色、会议/文章摘要等等领域。在商业上模型即产品、服务即产品、插件即产品&#xff0c;任何形态的用户可触及的都可以是产品&#xff0c…

opencv基础46-图像金字塔02-拉普拉斯金字塔

前面我们介绍了高斯金字塔&#xff0c;高斯金字塔是通过对一幅图像一系列的向下采样所产生的。有时&#xff0c;我们希望通过对金字塔中的小图像进行向上采样以获取完整的大尺寸高分辨率图像&#xff0c;这时就需要用到拉普拉斯金字塔 前面我们已经介绍过&#xff0c;一幅图像在…

.Net C# 免费PDF合成软件

最近用到pdf合成&#xff0c;发现各种软件均收费啊&#xff0c;这个技术非常简单&#xff0c;别人写好的库一大把&#xff0c;这里用到了PDFsharp&#xff0c;项目地址Home of PDFsharp and MigraDoc Foundation 软件下载地址 https://download.csdn.net/download/g313105910…

网站SSL安全证书是什么及其重要性

网站SSL安全证书具体来说是一个数字文件&#xff0c;是由受信任的数字证书颁发机构&#xff08;CA机构&#xff09;进行审核颁发的&#xff0c;其中包含CA发布的信息&#xff0c;该信息表明该网站已使用加密连接进行了安全保护。 网站SSL安全证书也被称为SSL证书、https证书和…

Similarities:精准相似度计算与语义匹配搜索工具包,多维度实现多种算法,覆盖文本、图像等领域,支持文搜、图搜文、图搜图匹配搜索

Similarities&#xff1a;精准相似度计算与语义匹配搜索工具包&#xff0c;多维度实现多种算法&#xff0c;覆盖文本、图像等领域&#xff0c;支持文搜、图搜文、图搜图匹配搜索 Similarities 相似度计算、语义匹配搜索工具包&#xff0c;实现了多种相似度计算、匹配搜索算法&…

IDEA之Debug调试

资料来源于韩老师视频 &#xff08;一&#xff09;初探debug 1、打断点的话&#xff1a;直接在该行前面单击左键&#xff0c;出现小红点就是断点了。 想要取消断点的话&#xff0c;再单击小红点即可。 运行debug时&#xff0c;右键选择"Debug…"而不是选“Run…”…

【C++】开源:spdlog跨平台日志库配置使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍spdlog日志库配置使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#xff0c;下…

​LeetCode解法汇总1572. 矩阵对角线元素的和

目录链接&#xff1a; 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目&#xff1a; https://github.com/September26/java-algorithms 原题链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 描述&#xff1a; 给你一个正…

配置vscode

配置vscode 设置相关 网址&#xff1a;https://code.visualstudio.com/ 搜索不要用百度用这个&#xff1a;cn.bing.com 1.安装中文包 Chinese (Simplified) (简体中文) 2.安装 open in browser 3.安装主题 Atom One Dark Theme 4. 安装图标样式 VSCode Great Icons 5.安装 L…

yum 安装本地包 rpm

有时直接yum install 有几个包死活下不下来 根据网址&#xff0c;手动下载&#xff0c;下载后上传至 centos 然后运行 sudo yum localinstall xxx.rpm 即可安装 参考 https://blog.csdn.net/weiguang1017/article/details/52293244

MachineLearningWu_16/P72-P77_Diagnostic

x.1 导数&#xff0c;计算图&#xff0c;大型网络 计算图就是根据链式法则求取偏导&#xff0c;大型网络就是多层网络堆叠而成。 x.2 Diagnostic 在我们对深度学习有了一些认知后&#xff0c;最重要的就是模型的诊断&#xff0c;以带有L1正则化的线性回归为例&#xff0c;我…

SQL | 排序检索的数据

3-排序检索的数据 使用order by语句排序检索到的数据。 3.1-排序数据 使用SQL语句返回一个数据表的列。 select prod_id from products; --------------------- | prod_name | --------------------- | 8 inch teddy bear | | 12 inch teddy bear | | 18 inch teddy bear |…

泊松损坏图像的快速尺度间小波去噪研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…