PyTorch深度学习环境安装(Anaconda、CUDA、cuDNN)及关联PyCharm

1. 关系讲解

  • TytorchPython机器学习库,基于Torch,用于自然语言处理等应用程序

  • Anaconda:是默认的python包和环境管理工具,安装了anaconda,就默认安装了conda

  • CUDACUDA是一种由显卡厂商NVIDIA推出的通用并行计算架构,该架构使GPU能解决复杂的计算问题,可用来计算深度学习

  • cuDNN:是基于CUDA的深度学习GPU加速库,有了它才能在GPU上完成深度学习的计算。

2. 安装Anaconda

Anaconda用于构建虚拟环境

这里直接用清华源镜像进行下载:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

一路next即可,建议勾选自动添加环境变量

输出环境查看,表示安装成功

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zO9tyVG1-1691462352016)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803100552062.png)]

3. 安装CUDA

3.1 正常安装


先查看本机NVIDIA支持的CUDA版本,查看左下角的系统信息-组件

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nxRnMmhX-1691462352017)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803101158505.png)]

所以我们下载的版本应该低于12.0.89

下载CUDA,直接前往官网下载:https://developer.nvidia.com/cuda-toolkit-archive

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hV9NCwdG-1691462352017)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803102744841.png)]

根据自己的电脑版本,选择CUDA版本

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hs8SuLoN-1691462352017)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803102713502.png)]

双击exe文件进行安装,推荐使用默认地址安装,同意并安装

自定义安装,并且全选所有的组件,但是取消选择visual studio

记住安装路径,方便后续配置环境变量

等待下载,安装完毕即可

查看环境变量,有两个变量是自动添加的

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-b4twhJVt-1691462352018)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803105158490.png)]

在环境变量Path中,需要我们额外添加三个目录,版本根据自己的版本进行更改(例如我的是v11.8)

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\CUPTI\lib64

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fw0vPG8G-1691462352018)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803110847581.png)]

打开cmd,输入

set PATH=c:

然后输入

echo %PATH%

关闭cmd,之后再次开启命令提示符,输入

echo %PATH%

使新添加的环境变量生效

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ka2k8zen-1691462352019)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803111434585.png)]

查看版本nvcc -V

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4IIfMOE3-1691462352020)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803111502835.png)]

查看设置的环境变量set cuda

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-93x7opAy-1691462352020)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803111604833.png)]

3.2 碰到的问题


可能输入环境变量会显示错误

先切换到CUDA对应的文件夹下面:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite,在这个文件夹下打开终端

输入两个命令:

.\bandwidthTest.exe
.\deviceQuery.exe
  • 若最后都显示pass,说明安装无误,是环境变量配置出错,再次按照上述环境变量配置的方法进行配置即可
  • 若最后显示的不是pass,说明安装错误,需要把原来的卸载并且重新安装

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QjbUlxaC-1691462352021)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803110119138.png)]

4. 安装cuDNN


下载cuDNN,下载之前需要注册账号,有点小麻烦,直接前往官网下载:https://developer.nvidia.com/rdp/cudnn-download

根据版本下载对应的[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sQ50hW12-1691462352021)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803114202407.png)]

下载Win版本,下载完毕后是一个压缩包

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZnWsM7fl-1691462352022)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803114420917.png)]

分别将cuDNN三个文件夹的内容分别复制到CUDA对应的文件夹里面。如下所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NUiZ7F3a-1691462352023)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803115421676.png)]

在环境变量Path中添加三个目录

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9BtV27vC-1691462352023)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803115954289.png)]

再次切换到CUDA的安装目录C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HbKcXmgV-1691462352024)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803120532693.png)]

运行两个测试文件.\bandwidthTest.exe.\deviceQuery.exe,显示Pass即可

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VxI8s9Bt-1691462352024)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803120318276.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-I15xVecW-1691462352025)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803120344257.png)]

5. 安装PyTorch


PyTorch 一分为三:torchtorchvisiontorchaudio。这三个库中,torch2G 左右,而 torchvision torchaudio只有 2M 左右,因此一般在代码里只会 import torch。当 torch 的版本给定后,另外两个附件的版本也唯一确定了。

安装 torch 前,先给出一张安装表,其中 cu113cuda 11.3cp39 即解释器的版本是 Python3.9

到目前位置,我们安装的软件版本如下,则我们下载 torch 2.0.0的版本:

  • Anaconda:4.5.4
  • CUDA:11.8
  • cdDNN:8.9
  • python:3.9

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6RLPqzkE-1691463175687)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803165339889.png)]

前往官网https://pytorch.org/get-started/previous-versions/查看torch 2.0.0对应的库版本

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-R2Go56vw-1691463175688)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803171709054.png)]

# CUDA 11.8
pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118

即对应的版本为

torch==2.0.0+cu118
torchvision==0.15.1+cu118
torchaudio==2.0.1

因为直接安装网速较慢,所以利用单个下载再逐一安装的方式进行安装配置,进入对应的网站:https://download.pytorch.org/whl/cu118

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4Ua5iIby-1691463175688)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803170552930.png)]

分别进入找到对应的版本

这里特别注意,torchaudio下载的版本为torchaudio==2.0.1+cu118,但是这个在官方下载中未指定cuda的版本,我们需要手动添加

进入虚拟环境DL,执行命令安装上述三个whl文件

pip install D:\Anaconda3_5.2\WHL\torch-2.0.0+cu118-cp39-cp39-win_amd64.whl
pip install D:\Anaconda3_5.2\WHL\torchaudio-2.0.1+cu118-cp39-cp39-win_amd64.whl
pip install D:\Anaconda3_5.2\WHL\torchvision-0.15.1+cu118-cp39-cp39-win_amd64.whl

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fj4ouHbA-1691463175689)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803172700537.png)]

安装完毕后进入python解释器进行验证

输入 import torch 导入 torch 库,再输入torch.cuda.is_available(),输出True即为安装成功

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PWNIzmbP-1691463175689)(C:\Users\29973\AppData\Roaming\Typora\typora-user-images\image-20230803173146178.png)]

6. 关联PyCharm


新建项目,选择已经存在的解释器

选择我们已经创建的Anaconda环境

选择完毕后,直接创建

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/32963.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI:03-基于深度神经网络的低空无人机目标检测图像识别的研究

文章目录 数据集收集与预处理深度神经网络模型设计模型训练与优化目标检测与图像识别代码实现:实验结果与分析讨论与展望低空无人机的广泛应用为许多领域带来了巨大的潜力和机会。为了实现无人机的自主导航和任务执行,准确的目标检测和图像识别是至关重要的。本文旨在研究并提…

PHP最简单自定义自己的框架数据库封装调用(五)

1、实现效果调用实现数据增删改查封装 2、创建数据表 CREATE TABLE test (id int(11) NOT NULL AUTO_INCREMENT,name varchar(30) DEFAULT NULL,age int(11) DEFAULT NULL,PRIMARY KEY (id) ) ENGINEMyISAM AUTO_INCREMENT4 DEFAULT CHARSETutf8;3、index.php 入口定义数据库…

matplotlib 笔记 注释annotate

在图中的特定位置添加文本注释、箭头和连接线,以便更清晰地解释图形中的数据或信息 主要参数 text文本内容xy箭头指向的目标点的坐标xytext注释文本的坐标arrowprops 一个字典,指定注释箭头的属性,如颜色、箭头样式等 没有arrowprops的时候…

PE启动盘和U启动盘(第三十六课)

PE启动盘和U启动盘(第三十六课) 一 WindowsPE工具盘 1. 制作WinPE镜像光盘 双击WePE64_V2.2-是-点击右下角光盘图标-选择ISO的输出位置-立即生成ISO 2. 通过光盘启动WinPE

深入理解PyTorch中的NoamOpt优化器

深入理解PyTorch中的NoamOpt优化器 作者:安静到无声 个人主页 今天,我们将深入探讨一个在自然语言处理领域广泛使用的优化器——NoamOpt。这个优化器是基于PyTorch实现的,并且在"Attention is All You Need"这篇论文中首次提出。…

Linux 基础(五)常用命令-文件属性

文件属性 文件权限文件属性修改文件权限属性 文件所有者 文件权限 文件属性 Linux中文件权限 可以通过文件属性体现; 使用 ll 查看文件列表 最前面的 l d 表示文件类型 1 5 表示硬链接数 或者 子文件夹个数 所属用户 所属用户组 文件大小 创建/更新时间 文件&…

java使用正则表达式时遇到的问题

标准的正则表达式是什么样的 Node.js(JavaScript) 在正则表达式中,斜杠(/)用来表示正则表达式的开始和结束。在JavaScript中,正则表达式可以使用斜杠包裹起来,以表示这是一个正则表达式的字面量。 在Node.js中&…

Flutter系列文章-Flutter UI进阶

在本篇文章中,我们将深入学习 Flutter UI 的进阶技巧,涵盖了布局原理、动画实现、自定义绘图和效果、以及 Material 和 Cupertino 组件库的使用。通过实例演示,你将更加了解如何创建复杂、令人印象深刻的用户界面。 第一部分:深入…

c51单片机串行通信示例代码(单片机--单片机通信)(附带proteus线路图)

//这个发送端代码 #include "reg51.h" #include "myheader.h" #define uchar unsigned char long int sleep_i0; long int main_i0; void main() {uchar sendx[6]{2,0,2,3,8,1};sleep(2000);TMOD0x20;TH10XF4;//根据波特率计算公式这里需要设置为这么多才能…

用vim打开后中文乱码怎么办

Vim中打开文件乱码主要是文件编码问题。用户可以参考如下解决方法。 1、用vim打开.vimrc配置文件 vim ~/.vimrc**注意:**如果用户根目录下没有.vimrc文件就把/etc/vim/vimrc文件复制过来直接用 cp /etc/vim/vimrc ~/.vimrc2、在.vimrc中加入如下内容 set termen…

将达梦DM8数据库JDBC驱动注册到本地Maven仓库安装

这里写目录标题 1下载DmJdbcDriver18.jar2,以管理员身份运行CMD窗口,然后执行如下安装命令:3.pom文件添加引用 1下载DmJdbcDriver18.jar 我本地放在d:\DmJdbcDriver.jar 2,以管理员身份运行CMD窗口,然后执行如下安装命令: mvn …

【雕爷学编程】Arduino动手做(13)---TTP223B电容式触摸按键模块之点动型篮板、AB款红板、AT款篮板与带背光板锁存款

37款传感器与模块的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的&#x…

docker镜像push到仓库

镜像可以很方便直接 push 到 docker 的公共仓库或阿里云仓库 一、Dockerpush指定仓库是什么? Dockerpush是Docker的一个命令,用于将本地的Docker镜像推送到Docker官方公共仓库或用户私人仓库。而指定仓库则是将这个Docker镜像推送到指定的仓库中。 通过D…

GPT-3.5 人工智能还是人工智障?——西红柿炒钢丝球!!

人工智能还是人工智障?——西红柿炒钢丝球 西红柿炒钢丝球的 基本信息西红柿炒钢丝球的 详细制作方法材料步骤 备注幕后花絮。。。。。。。。。关于GPT-3.5,你的看法: 西红柿炒钢丝球的 基本信息 西红柿炒钢丝球是一道具有悠久历史的传统中式…

不基于比较的排序:基数排序

本篇只是讨论桶排序的具体实现,想了解更多算法内容可以在我的博客里搜,建议大家看看这篇排序算法总结:排序算法总结_鱼跃鹰飞的博客-CSDN博客 桶排序的原理: 代码:sort1是一个比较二逼的实现方式浪费空间,s…

Linux Day08

内存申请与释放 前面的内存为实际内存&#xff0c;后面的交换空间为虚拟内存 当申请空间小于等于内存时&#xff0c;先使用内存。 当申请空间d大于内存时&#xff0c;使用内存虚拟内存 1、判断依据 申请1个G的空间 #include<stdio.h> #include<stdlib.h> #inc…

neo4j终端操作

1】进入容器 (base) xiaokkkxiaokkkdeMacBook-Pro ~ % docker exec -it 77ed5fe2b52e /bin/bash 2】启动、停止neo4j root77ed5fe2b52e:/var/lib/neo4j/bin# ./neo4j start Neo4j is already running (pid:7). Run with --verbose for a more detailed error message.root7…

MySQL目录结构与源码

目录 1.1 主要的目录结构 1.2 MySQL源码获取 1.1 主要的目录结构 MySQL的目录结构说明bin目录所有MySQL的可执行文件。如&#xff1a;mysql.exeMySQLInstanceConfig.exe数据库的配置向导&#xff0c;在安装时出现的内容data目录系统数据库所在的目录my.ini文件MySQL的主要配置…

Git Cherry-pick使用

概述 无论项目大小&#xff0c;当你和一群程序员一起工作时&#xff0c;处理多个 Git 分支之间的变更都会变得很困难。有时&#xff0c;与其把整个 Git 分支合并到另一个分支&#xff0c;不如选择并移动几个特定的提交。这个过程被称为 "挑拣", 即 Cherry-pick。 本…

【vue3】解决scope.row.id套标签太多无法随着点击按钮而变化

实现要求:再点击每一行的修改按钮时&#xff0c;动态拿取该行的id传给后端作为pk(主键)实现数据库数据的修改&#xff0c;并显示在vue前端&#xff1b; 我遇到的问题&#xff1a;在2处使用 scope 作用域插槽拿取每一行的数据&#xff0c;在3处&#xff0c;删除按钮那一行代码&a…