一文理解Netty模型架构

转载自  一文理解Netty模型架构

本文基于Netty4.1展开介绍相关理论模型,使用场景,基本组件、整体架构,知其然且知其所以然,希望给读者提供学习实践参考。

1 Netty简介

Netty是 一个异步事件驱动的网络应用程序框架,用于快速开发可维护的高性能协议服务器和客户端。

 

 

JDK原生NIO程序的问题

JDK原生也有一套网络应用程序API,但是存在一系列问题,主要如下:

  • NIO的类库和API繁杂,使用麻烦,你需要熟练掌握Selector、ServerSocketChannel、SocketChannel、ByteBuffer等
  • 需要具备其它的额外技能做铺垫,例如熟悉Java多线程编程,因为NIO编程涉及到Reactor模式,你必须对多线程和网路编程非常熟悉,才能编写出高质量的NIO程序
  • 可靠性能力补齐,开发工作量和难度都非常大。例如客户端面临断连重连、网络闪断、半包读写、失败缓存、网络拥塞和异常码流的处理等等,NIO编程的特点是功能开发相对容易,但是可靠性能力补齐工作量和难度都非常大
  • JDK NIO的BUG,例如臭名昭著的epoll bug,它会导致Selector空轮询,最终导致CPU 100%。官方声称在JDK1.6版本的update18修复了该问题,但是直到JDK1.7版本该问题仍旧存在,只不过该bug发生概率降低了一些而已,它并没有被根本解决

Netty的特点

Netty的对JDK自带的NIO的API进行封装,解决上述问题,主要特点有:

  • 设计优雅 适用于各种传输类型的统一API - 阻塞和非阻塞Socket 基于灵活且可扩展的事件模型,可以清晰地分离关注点 高度可定制的线程模型 - 单线程,一个或多个线程池 真正的无连接数据报套接字支持(自3.1起)
  • 使用方便 详细记录的Javadoc,用户指南和示例 没有其他依赖项,JDK 5(Netty 3.x)或6(Netty 4.x)就足够了
  • 高性能 吞吐量更高,延迟更低 减少资源消耗 最小化不必要的内存复制
  • 安全 完整的SSL / TLS和StartTLS支持
  • 社区活跃,不断更新 社区活跃,版本迭代周期短,发现的BUG可以被及时修复,同时,更多的新功能会被加入

Netty常见使用常见

Netty常见的使用场景如下:

  • 互联网行业 在分布式系统中,各个节点之间需要远程服务调用,高性能的RPC框架必不可少,Netty作为异步高新能的通信框架,往往作为基础通信组件被这些RPC框架使用。 典型的应用有:阿里分布式服务框架Dubbo的RPC框架使用Dubbo协议进行节点间通信,Dubbo协议默认使用Netty作为基础通信组件,用于实现各进程节点之间的内部通信。
  • 游戏行业 无论是手游服务端还是大型的网络游戏,Java语言得到了越来越广泛的应用。Netty作为高性能的基础通信组件,它本身提供了TCP/UDP和HTTP协议栈。 非常方便定制和开发私有协议栈,账号登录服务器,地图服务器之间可以方便的通过Netty进行高性能的通信
  • 大数据领域 经典的Hadoop的高性能通信和序列化组件Avro的RPC框架,默认采用Netty进行跨界点通信,它的Netty Service基于Netty框架二次封装实现

有兴趣的读者可以了解一下目前有哪些开源项目使用了 Netty:Related projects

2 Netty高性能设计

Netty作为异步事件驱动的网络,高性能之处主要来自于其I/O模型和线程处理模型,前者决定如何收发数据,后者决定如何处理数据

I/O模型

用什么样的通道将数据发送给对方,BIO、NIO或者AIO,I/O模型在很大程度上决定了框架的性能

阻塞I/O

传统阻塞型I/O(BIO)可以用下图表示:

 

 

特点

  • 每个请求都需要独立的线程完成数据read,业务处理,数据write的完整操作

问题

  • 当并发数较大时,需要创建大量线程来处理连接,系统资源占用较大
  • 连接建立后,如果当前线程暂时没有数据可读,则线程就阻塞在read操作上,造成线程资源浪费

I/O复用模型

在I/O复用模型中,会用到select,这个函数也会使进程阻塞,但是和阻塞I/O所不同的的,这两个函数可以同时阻塞多个I/O操作,而且可以同时对多个读操作,多个写操作的I/O函数进行检测,直到有数据可读或可写时,才真正调用I/O操作函数

 

 

Netty的非阻塞I/O的实现关键是基于I/O复用模型,这里用Selector对象表示:

 

 

Netty的IO线程NioEventLoop由于聚合了多路复用器Selector,可以同时并发处理成百上千个客户端连接。当线程从某客户端Socket通道进行读写数据时,若没有数据可用时,该线程可以进行其他任务。线程通常将非阻塞 IO 的空闲时间用于在其他通道上执行 IO 操作,所以单独的线程可以管理多个输入和输出通道。

由于读写操作都是非阻塞的,这就可以充分提升IO线程的运行效率,避免由于频繁I/O阻塞导致的线程挂起,一个I/O线程可以并发处理N个客户端连接和读写操作,这从根本上解决了传统同步阻塞I/O一连接一线程模型,架构的性能、弹性伸缩能力和可靠性都得到了极大的提升。

基于buffer

传统的I/O是面向字节流或字符流的,以流式的方式顺序地从一个Stream 中读取一个或多个字节, 因此也就不能随意改变读取指针的位置。

在NIO中, 抛弃了传统的 I/O流, 而是引入了Channel和Buffer的概念. 在NIO中, 只能从Channel中读取数据到Buffer中或将数据 Buffer 中写入到 Channel。

基于buffer操作不像传统IO的顺序操作, NIO 中可以随意地读取任意位置的数据

线程模型

数据报如何读取?读取之后的编解码在哪个线程进行,编解码后的消息如何派发,线程模型的不同,对性能的影响也非常大。

事件驱动模型

通常,我们设计一个事件处理模型的程序有两种思路

  • 轮询方式 线程不断轮询访问相关事件发生源有没有发生事件,有发生事件就调用事件处理逻辑。
  • 事件驱动方式 发生事件,主线程把事件放入事件队列,在另外线程不断循环消费事件列表中的事件,调用事件对应的处理逻辑处理事件。事件驱动方式也被称为消息通知方式,其实是发布-订阅模式的思路。

以GUI的逻辑处理为例,说明两种逻辑的不同:

  • 轮询方式 线程不断轮询是否发生按钮点击事件,如果发生,调用处理逻辑
  • 事件驱动方式 发生点击事件把事件放入事件队列,在另外线程消费的事件列表中的事件,根据事件类型调用相关事件处理逻辑

这里借用O'Reilly 大神关于事件驱动模型解释图

 

 

主要包括4个基本组件:

  • 事件队列(event queue):接收事件的入口,存储待处理事件
  • 分发器(event mediator):将不同的事件分发到不同的业务逻辑单元
  • 事件通道(event channel):分发器与处理器之间的联系渠道
  • 事件处理器(event processor):实现业务逻辑,处理完成后会发出事件,触发下一步操作

可以看出,相对传统轮询模式,事件驱动有如下优点:

  • 可扩展性好,分布式的异步架构,事件处理器之间高度解耦,可以方便扩展事件处理逻辑
  • 高性能,基于队列暂存事件,能方便并行异步处理事件

Reactor线程模型

Reactor是反应堆的意思,Reactor模型,是指通过一个或多个输入同时传递给服务处理器的服务请求的事件驱动处理模式。 服务端程序处理传入多路请求,并将它们同步分派给请求对应的处理线程,Reactor模式也叫Dispatcher模式,即I/O多了复用统一监听事件,收到事件后分发(Dispatch给某进程),是编写高性能网络服务器的必备技术之一。

Reactor模型中有2个关键组成:

  • Reactor Reactor在一个单独的线程中运行,负责监听和分发事件,分发给适当的处理程序来对IO事件做出反应。 它就像公司的电话接线员,它接听来自客户的电话并将线路转移到适当的联系人

  • Handlers 处理程序执行I/O事件要完成的实际事件,类似于客户想要与之交谈的公司中的实际官员。Reactor通过调度适当的处理程序来响应I/O事件,处理程序执行非阻塞操作

取决于Reactor的数量和Handler线程数量的不同,Reactor模型有3个变种

  • 单Reactor单线程
  • 单Reactor多线程
  • 主从Reactor多线程

可以这样理解,Reactor就是一个执行while (true) { selector.select(); ...}循环的线程,会源源不断的产生新的事件,称作反应堆很贴切。

篇幅关系,这里不再具体展开Reactor特性、优缺点比较,有兴趣的读者可以参考我之前另外一篇文章:《理解高性能网络模型》

Netty线程模型

Netty主要基于主从Reactors多线程模型(如下图)做了一定的修改,其中主从Reactor多线程模型有多个Reactor:MainReactor和SubReactor:

  • MainReactor负责客户端的连接请求,并将请求转交给SubReactor
  • SubReactor负责相应通道的IO读写请求
  • 非IO请求(具体逻辑处理)的任务则会直接写入队列,等待worker threads进行处理

这里引用Doug Lee大神的Reactor介绍:Scalable IO in Java里面关于主从Reactor多线程模型的图

特别说明的是: 虽然Netty的线程模型基于主从Reactor多线程,借用了MainReactor和SubReactor的结构,但是实际实现上,SubReactor和Worker线程在同一个线程池中:

EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
ServerBootstrap server = new ServerBootstrap();
server.group(bossGroup, workerGroup).channel(NioServerSocketChannel.class)

上面代码中的bossGroup 和workerGroup是Bootstrap构造方法中传入的两个对象,这两个group均是线程池

  • bossGroup线程池则只是在bind某个端口后,获得其中一个线程作为MainReactor,专门处理端口的accept事件,每个端口对应一个boss线程
  • workerGroup线程池会被各个SubReactor和worker线程充分利用

异步处理

异步的概念和同步相对。当一个异步过程调用发出后,调用者不能立刻得到结果。实际处理这个调用的部件在完成后,通过状态、通知和回调来通知调用者。

Netty中的I/O操作是异步的,包括bind、write、connect等操作会简单的返回一个ChannelFuture,调用者并不能立刻获得结果,通过Future-Listener机制,用户可以方便的主动获取或者通过通知机制获得IO操作结果。

当future对象刚刚创建时,处于非完成状态,调用者可以通过返回的ChannelFuture来获取操作执行的状态,注册监听函数来执行完成后的操,常见有如下操作:

  • 通过isDone方法来判断当前操作是否完成
  • 通过isSuccess方法来判断已完成的当前操作是否成功
  • 通过getCause方法来获取已完成的当前操作失败的原因
  • 通过isCancelled方法来判断已完成的当前操作是否被取消
  • 通过addListener方法来注册监听器,当操作已完成(isDone方法返回完成),将会通知指定的监听器;如果future对象已完成,则理解通知指定的监听器

例如下面的的代码中绑定端口是异步操作,当绑定操作处理完,将会调用相应的监听器处理逻辑

    serverBootstrap.bind(port).addListener(future -> {if (future.isSuccess()) {System.out.println(new Date() + ": 端口[" + port + "]绑定成功!");} else {System.err.println("端口[" + port + "]绑定失败!");}});

相比传统阻塞I/O,执行I/O操作后线程会被阻塞住, 直到操作完成;异步处理的好处是不会造成线程阻塞,线程在I/O操作期间可以执行别的程序,在高并发情形下会更稳定和更高的吞吐量。

3 Netty架构设计

前面介绍完Netty相关一些理论介绍,下面从功能特性、模块组件、运作过程来介绍Netty的架构设计

功能特性

  • 传输服务 支持BIO和NIO
  • 容器集成 支持OSGI、JBossMC、Spring、Guice容器
  • 协议支持 HTTP、Protobuf、二进制、文本、WebSocket等一系列常见协议都支持。 还支持通过实行编码解码逻辑来实现自定义协议
  • Core核心 可扩展事件模型、通用通信API、支持零拷贝的ByteBuf缓冲对象

模块组件

Bootstrap、ServerBootstrap

Bootstrap意思是引导,一个Netty应用通常由一个Bootstrap开始,主要作用是配置整个Netty程序,串联各个组件,Netty中Bootstrap类是客户端程序的启动引导类,ServerBootstrap是服务端启动引导类。

Future、ChannelFuture

正如前面介绍,在Netty中所有的IO操作都是异步的,不能立刻得知消息是否被正确处理,但是可以过一会等它执行完成或者直接注册一个监听,具体的实现就是通过Future和ChannelFutures,他们可以注册一个监听,当操作执行成功或失败时监听会自动触发注册的监听事件。

Channel

Netty网络通信的组件,能够用于执行网络I/O操作。 Channel为用户提供:

  • 当前网络连接的通道的状态(例如是否打开?是否已连接?)
  • 网络连接的配置参数 (例如接收缓冲区大小)
  • 提供异步的网络I/O操作(如建立连接,读写,绑定端口),异步调用意味着任何I / O调用都将立即返回,并且不保证在调用结束时所请求的I / O操作已完成。调用立即返回一个ChannelFuture实例,通过注册监听器到ChannelFuture上,可以I / O操作成功、失败或取消时回调通知调用方。
  • 支持关联I/O操作与对应的处理程序

不同协议、不同的阻塞类型的连接都有不同的 Channel 类型与之对应,下面是一些常用的 Channel 类型

  • NioSocketChannel,异步的客户端 TCP Socket 连接
  • NioServerSocketChannel,异步的服务器端 TCP Socket 连接
  • NioDatagramChannel,异步的 UDP 连接
  • NioSctpChannel,异步的客户端 Sctp 连接
  • NioSctpServerChannel,异步的 Sctp 服务器端连接 这些通道涵盖了 UDP 和 TCP网络 IO以及文件 IO.

Selector

Netty基于Selector对象实现I/O多路复用,通过 Selector, 一个线程可以监听多个连接的Channel事件, 当向一个Selector中注册Channel 后,Selector 内部的机制就可以自动不断地查询(select) 这些注册的Channel是否有已就绪的I/O事件(例如可读, 可写, 网络连接完成等),这样程序就可以很简单地使用一个线程高效地管理多个 Channel 。

NioEventLoop

NioEventLoop中维护了一个线程和任务队列,支持异步提交执行任务,线程启动时会调用NioEventLoop的run方法,执行I/O任务和非I/O任务:

  • I/O任务 即selectionKey中ready的事件,如accept、connect、read、write等,由processSelectedKeys方法触发。
  • 非IO任务 添加到taskQueue中的任务,如register0、bind0等任务,由runAllTasks方法触发。

两种任务的执行时间比由变量ioRatio控制,默认为50,则表示允许非IO任务执行的时间与IO任务的执行时间相等。

NioEventLoopGroup

NioEventLoopGroup,主要管理eventLoop的生命周期,可以理解为一个线程池,内部维护了一组线程,每个线程(NioEventLoop)负责处理多个Channel上的事件,而一个Channel只对应于一个线程。

ChannelHandler

ChannelHandler是一个接口,处理I / O事件或拦截I / O操作,并将其转发到其ChannelPipeline(业务处理链)中的下一个处理程序。

ChannelHandler本身并没有提供很多方法,因为这个接口有许多的方法需要实现,方便使用期间,可以继承它的子类:

  • ChannelInboundHandler用于处理入站I / O事件
  • ChannelOutboundHandler用于处理出站I / O操作

或者使用以下适配器类:

  • ChannelInboundHandlerAdapter用于处理入站I / O事件
  • ChannelOutboundHandlerAdapter用于处理出站I / O操作
  • ChannelDuplexHandler用于处理入站和出站事件

ChannelHandlerContext

保存Channel相关的所有上下文信息,同时关联一个ChannelHandler对象

ChannelPipline

保存ChannelHandler的List,用于处理或拦截Channel的入站事件和出站操作。 ChannelPipeline实现了一种高级形式的拦截过滤器模式,使用户可以完全控制事件的处理方式,以及Channel中各个的ChannelHandler如何相互交互。

下图引用Netty的Javadoc4.1中ChannelPipline的说明,描述了ChannelPipeline中ChannelHandler通常如何处理I/O事件。 I/O事件由ChannelInboundHandler或ChannelOutboundHandler处理,并通过调用ChannelHandlerContext中定义的事件传播方法(例如ChannelHandlerContext.fireChannelRead(Object)和ChannelOutboundInvoker.write(Object))转发到其最近的处理程序。

                                                 I/O Requestvia Channel orChannelHandlerContext|+---------------------------------------------------+---------------+|                           ChannelPipeline         |               ||                                                  \|/              ||    +---------------------+            +-----------+----------+    ||    | Inbound Handler  N  |            | Outbound Handler  1  |    ||    +----------+----------+            +-----------+----------+    ||              /|\                                  |               ||               |                                  \|/              ||    +----------+----------+            +-----------+----------+    ||    | Inbound Handler N-1 |            | Outbound Handler  2  |    ||    +----------+----------+            +-----------+----------+    ||              /|\                                  .               ||               .                                   .               || ChannelHandlerContext.fireIN_EVT() ChannelHandlerContext.OUT_EVT()||        [ method call]                       [method call]         ||               .                                   .               ||               .                                  \|/              ||    +----------+----------+            +-----------+----------+    ||    | Inbound Handler  2  |            | Outbound Handler M-1 |    ||    +----------+----------+            +-----------+----------+    ||              /|\                                  |               ||               |                                  \|/              ||    +----------+----------+            +-----------+----------+    ||    | Inbound Handler  1  |            | Outbound Handler  M  |    ||    +----------+----------+            +-----------+----------+    ||              /|\                                  |               |+---------------+-----------------------------------+---------------+|                                  \|/+---------------+-----------------------------------+---------------+|               |                                   |               ||       [ Socket.read() ]                    [ Socket.write() ]     ||                                                                   ||  Netty Internal I/O Threads (Transport Implementation)            |+-------------------------------------------------------------------+

入站事件由自下而上方向的入站处理程序处理,如图左侧所示。 入站Handler处理程序通常处理由图底部的I / O线程生成的入站数据。 通常通过实际输入操作(例如SocketChannel.read(ByteBuffer))从远程读取入站数据。

出站事件由上下方向处理,如图右侧所示。 出站Handler处理程序通常会生成或转换出站传输,例如write请求。 I/O线程通常执行实际的输出操作,例如SocketChannel.write(ByteBuffer)。

在 Netty 中每个 Channel 都有且仅有一个 ChannelPipeline 与之对应, 它们的组成关系如下:

 

 

一个 Channel 包含了一个 ChannelPipeline, 而 ChannelPipeline 中又维护了一个由 ChannelHandlerContext 组成的双向链表, 并且每个 ChannelHandlerContext 中又关联着一个 ChannelHandler。入站事件和出站事件在一个双向链表中,入站事件会从链表head往后传递到最后一个入站的handler,出站事件会从链表tail往前传递到最前一个出站的handler,两种类型的handler互不干扰。

工作原理架构

初始化并启动Netty服务端过程如下:

    public static void main(String[] args) {// 创建mainReactorNioEventLoopGroup boosGroup = new NioEventLoopGroup();// 创建工作线程组NioEventLoopGroup workerGroup = new NioEventLoopGroup();final ServerBootstrap serverBootstrap = new ServerBootstrap();serverBootstrap // 组装NioEventLoopGroup .group(boosGroup, workerGroup)// 设置channel类型为NIO类型.channel(NioServerSocketChannel.class)// 设置连接配置参数.option(ChannelOption.SO_BACKLOG, 1024).childOption(ChannelOption.SO_KEEPALIVE, true).childOption(ChannelOption.TCP_NODELAY, true)// 配置入站、出站事件handler.childHandler(new ChannelInitializer<NioSocketChannel>() {@Overrideprotected void initChannel(NioSocketChannel ch) {// 配置入站、出站事件channelch.pipeline().addLast(...);ch.pipeline().addLast(...);}});// 绑定端口int port = 8080;serverBootstrap.bind(port).addListener(future -> {if (future.isSuccess()) {System.out.println(new Date() + ": 端口[" + port + "]绑定成功!");} else {System.err.println("端口[" + port + "]绑定失败!");}});
}
  • 基本过程如下:
  • 1 初始化创建2个NioEventLoopGroup,其中boosGroup用于Accetpt连接建立事件并分发请求, workerGroup用于处理I/O读写事件和业务逻辑
  • 2 基于ServerBootstrap(服务端启动引导类),配置EventLoopGroup、Channel类型,连接参数、配置入站、出站事件handler
  • 3 绑定端口,开始工作

结合上面的介绍的Netty Reactor模型,介绍服务端Netty的工作架构图:

server端包含1个Boss NioEventLoopGroup和1个Worker NioEventLoopGroup,NioEventLoopGroup相当于1个事件循环组,这个组里包含多个事件循环NioEventLoop,每个NioEventLoop包含1个selector和1个事件循环线程。

每个Boss NioEventLoop循环执行的任务包含3步:

  • 1 轮询accept事件
  • 2 处理accept I/O事件,与Client建立连接,生成NioSocketChannel,并将NioSocketChannel注册到某个Worker NioEventLoop的Selector上 *3 处理任务队列中的任务,runAllTasks。任务队列中的任务包括用户调用eventloop.execute或schedule执行的任务,或者其它线程提交到该eventloop的任务。

每个Worker NioEventLoop循环执行的任务包含3步:

  • 1 轮询read、write事件;
  • 2 处I/O事件,即read、write事件,在NioSocketChannel可读、可写事件发生时进行处理
  • 3 处理任务队列中的任务,runAllTasks。

其中任务队列中的task有3种典型使用场景

  • 1 用户程序自定义的普通任务
ctx.channel().eventLoop().execute(new Runnable() {@Overridepublic void run() {//...}
});
  • 2 非当前reactor线程调用channel的各种方法 例如在推送系统的业务线程里面,根据用户的标识,找到对应的channel引用,然后调用write类方法向该用户推送消息,就会进入到这种场景。最终的write会提交到任务队列中后被异步消费。

  • 3 用户自定义定时任务

ctx.channel().eventLoop().schedule(new Runnable() {@Overridepublic void run() {}
}, 60, TimeUnit.SECONDS);

4 总结

现在稳定推荐使用的主流版本还是Netty4,Netty5 中使用了 ForkJoinPool,增加了代码的复杂度,但是对性能的改善却不明显,所以这个版本不推荐使用,官网也没有提供下载链接。

Netty 入门门槛相对较高,其实是因为这方面的资料较少,并不是因为他有多难,大家其实都可以像搞透 Spring 一样搞透 Netty。在学习之前,建议先理解透整个框架原理结构,运行过程,可以少走很多弯路。

(本文同时发表于作者个人博客 www.jianshu.com/u/ced6b70c7…)

参考

Netty入门与实战:仿写微信 IM 即时通讯系统

Netty官网

Netty 4.x学习笔记 - 线程模型

Netty入门与实战

理解高性能网络模型

Netty基本原理介绍

software-architecture-patterns.pdf

Netty高性能之道 —— 李林锋

《Netty In Action》

《Netty权威指南》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/323251.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

尝试涉猎更多领域

昨天b站上看视频&#xff0c;浏览评论时&#xff0c;看到一个网址 https://xiaoyou66.com/ 博主写了大概一百篇的文章&#xff0c;我进来的时候真的是被这js特效给惊到了&#xff0c;个人网站也能变得这么二次元嘛&#xff0c;讲实话&#xff0c;光是看这酷炫的页面都比较有欲望…

聊聊分布式事务,再说说解决方案

前言 最近很久没有写博客了&#xff0c;一方面是因为公司事情最近比较忙&#xff0c;另外一方面是因为在进行 CAP 的下一阶段的开发工作&#xff0c;不过目前已经告一段落了。 接下来还是开始我们今天的话题&#xff0c;说说分布式事务&#xff0c;或者说是我眼中的分布式事务&…

Redis+Tomcat+Nginx集群实现Session共享,Tomcat Session共享

转载自 RedisTomcatNginx集群实现Session共享&#xff0c;Tomcat Session共享 一、Session共享使用tomcat-cluster-redis-session-manager插件实现 插件地址见&#xff1a; https://github.com/ran-jit/tomcat-cluster-redis-session-manager 该插件支持Tomcat7、Tomcat8、To…

个人博客搭建

先下载node.js 用npm或cnpm安装hexo cnpm install hexo 再创建一个文件夹&#xff0c;在文件夹目录下打开cmd 输入 hexo init 输入 hexo s 这就在本地算是完成了一个博客的创建 新建博客hexo n ‘Hello world’ hexo clean hexo s 就可以再次启动&#xff0c;这样 记得先 cn…

C#使用Xamarin开发可移植移动应用进阶篇(10.综合演练,来一份增删改查CRUD)

说点什么.. 呃 也有半个月没更新了. 本来这篇的Demo早就写完了,文章也构思好了.迟迟没发布..是因为实在太忙.. 项目要上线..各种 你们懂的.. 正赶上自己十一人生大事..结婚..所以..忙的那叫一个脚不沾地啊. 今天的学习内容? 使用我们前面所学的技术,写一个增删改查. 效果如下…

hexo部署在码云出现样式问题

然而本地服务器并没有任何问题 重建一个 重新建一个仓库 还是这种情况&#xff0c;回头再找原因&#xff0c;两次都是这种情况&#xff0c;就是配置错了 借用 https://blog.csdn.net/xiangwanpeng/article/details/53155642 https://blog.csdn.net/qq_29347295/article/deta…

当你输入一个网址的时候,实际会发生什么?

转载自 当你输入一个网址的时候&#xff0c;实际会发生什么? 译文:http://igoro.com/archive/what-really-happens-when-you-navigate-to-a-url/ 作为一个软件开发者&#xff0c;你一定会对网络应用如何工作有一个完整的层次化的认知&#xff0c;同样这里也包括这些应用所…

SIMD via C#

简介 TL;DR 我们为C#&#xff08;准确地说是.NET Core&#xff09;引入了一套全新的机制&#xff0c;使得C# 以后可以像C/C 一样直接使用intrinsic functions 来直接操作Intel CPU 的大多数SIMD 指令了&#xff08;从SSE 到AVX2&#xff09;。 &#xff08;注意是以后&#xff…

Ae做一个立体地球

Ae做一个立体地球 拿到一张照片 将它变成标题的地球 在AE里 即可变成一个地球 看上去亮多了&#xff0c;再定个关键帧即可旋转

ASP.NET Core 处理 404 Not Found

问题 在没有修改任何配置的情况下&#xff0c;这是用户使用 Chrome 访问不存在的URL时会看到的内容&#xff1a; 幸运的是&#xff0c;处理错误状态代码非常简单&#xff0c;我们将在下面介绍三种技术。 解决方案 在以前的ASP.NET MVC版本中&#xff0c;主要在 web.config 中处…

搭建一个二次元博客

小叙&#xff1a; 因为前段日子尝试过自己搭建网站&#xff0c;也在b站发了视频&#xff0c;奈何技术太菜&#xff0c;被喷的严重。所以决定重构一下网站&#xff0c;改成一个个人博客。这里非常感谢小游提供的主题&#xff0c;感谢他对这么优秀的主题的推广。 如果你正好也要…

从头编写 asp.net core 2.0 web api 基础框架 (5) EF CRUD

Github源码地址&#xff1a;https://github.com/solenovex/Building-asp.net-core-2-web-api-starter-template-from-scratch 这是第一大部分的最后一小部分。要完成CRUD的操作。 Repository Pattern 我们可以直接在Controller访问DbContext&#xff0c;但是可能会有一些问题: …

做这个网站原因之二

讲讲我最近干了什么事吧以及以后该干啥 其实大部分我学到的东西&#xff0c;都写在博客上了&#xff0c;可以通过博客看到一个人的学习轨迹。除了这些&#xff0c;我也尝试拍些视频去学习一些新的东西。视频剪辑&#xff0c;特效什么的都在尝试。 有个视频我也只是随便尝试尝试…

spring cloud+dotnet core搭建微服务架构:配置中心续(五)

前言 上一章最后讲了&#xff0c;更新配置以后需要重启客户端才能生效&#xff0c;这在实际的场景中是不可取的。由于目前Steeltoe配置的重载只能由客户端发起&#xff0c;没有实现处理程序侦听服务器更改事件&#xff0c;所以还没办法实现彻底实现这一功能。这一章的例子&…

聊聊最近吧

讲讲我最近干了什么事吧以及以后该干啥 其实大部分我学到的东西&#xff0c;都写在博客上了&#xff0c;可以通过博客看到一个人的学习轨迹。除了这些&#xff0c;我也尝试拍些视频去学习一些新的东西。视频剪辑&#xff0c;特效什么的都在尝试。 有个视频我也只是随便尝试尝试…

C# 实现虚拟数字人

随着Ai技术的提升和应用&#xff0c;虚拟数字人被广泛应用到各行各业中。为我们的生活和工作提供了非常多的便利和色彩。 通过设置虚拟数字人的位置大小&#xff0c;可以让数字人可以在电脑屏幕各个位置显示&#xff1a; 虚拟数字人素材&#xff1a; 虚拟数字人(实际有语音&am…

AspectCore.Extension.Reflection : .NET Core反射扩展库

在从零实现AOP的过程中&#xff0c;难免会需要大量反射相关的操作&#xff0c;虽然在.net 4.5/.net core中反射的性能有了大幅的优化&#xff0c;但为了追求极致性能&#xff0c;自己实现了部分反射的替代方案&#xff0c;包括构造器调用、方法调用、字段读写&#xff0c;属性读…

【分享】通过手游赚¥

这本来是个回答&#xff0c;但是在知乎被删了&#xff0c;于是我决定还是在自己网站再发一份&#xff0c;特么知乎店大欺人&#xff0c;我一这么水回答&#xff0c;还被认为是广告营销 首先说明一点&#xff0c;这个完全是自我经历&#xff0c;一种分享吧。觉得假的自然假。 我…

Azure Cosmos DB技术性解读

Azure Cosmos DB是微软公司打造的一项全球分布式、横向分区、多模型数据库服务。该服务允许客户弹性&#xff08;及独立形式&#xff09;跨越任意数量地理服务区对吞吐量与存储进行扩展。Azure Cosmos DB可立足第99百分位比例提升99.99%高可用性水平&#xff0c;提供可预测吞吐…

NOIP2018-普及总结

前言 原本说要去提高的&#xff0c;然后市里瞎搞&#xff0c;就去不了了QVQQVQQVQ。 总结 这次一看感觉题目比较难&#xff0c;所以基本凉凉… 首先这次有很多失误&#xff0c;特别是T2T2T2&#xff0c;其实很容易就分析出要用longlonglong\ \ longlong long的&#xff0c;但…