【C++学习】STL容器——list

目录

一、list的介绍及使用

1.1 list的介绍

 1.2 list的使用

1.2.1 list的构造

 1.2.2  list iterator的使用

1.2.3 list capacity

1.2.4 list element access

1.2.5 list modifiers

1.2.6 list 迭代器失效

二、list的模拟实现

2.1 模拟实现list

三、list和vector的对比


一、list的介绍及使用

1.1 list的介绍

list的文档介绍

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

 1.2 list的使用

        list中的接口比较多,此处类似,只需要掌握如何正确的使用,然后再去深入研究背后的原理,已达到可扩展的能力。以下为list 中一些 常见的重要接口
1.2.1 list的构造
构造函数( (constructor)
接口说明
list (size_type n, const value_type& val = value_type())
构造的 list 中包含 n 个值为 val 的元素
list()构造空的list
list (const list& x)拷贝构造函数
list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list
 1.2.2  list iterator的使用

此处,大家可暂时将迭代器理解成一个指针,该指针指向list中的某个节点。

函数声明接口说明
begin +  end返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin +  rend返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的 reverse_iterator,即begin位置

【注意】
1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动

2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动  

1.2.3 list capacity
函数声明接口说明
empty检测list是否为空,是返回true,否则返回false
size返回list中有效节点的个数
1.2.4 list element access
函数声明接口说明
front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用
1.2.5 list modifiers
函数声明接口说明
push_front在list首元素前插入值为val的元素
pop_front删除list中第一个元素
push_back在list尾部插入值为val的元素
pop_back删除list中最后一个元素
insert在list position 位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元
1.2.6 list 迭代器失效

        前面说过,此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。

void TestListIterator1() 
{    int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array+sizeof(array)/sizeof(array[0]));auto it = l.begin();while (it != l.end()){// erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋值        l.erase(it);++it;    } 
}// 改正 
void TestListIterator()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array+sizeof(array)/sizeof(array[0]));auto it = l.begin();while (it != l.end()){l.erase(it++);// it = l.erase(it);} 
}

二、list的模拟实现

2.1 模拟实现list

        要模拟实现list,必须要熟悉list的底层结构以及其接口的含义,通过上面的学习,这些内容已基本掌握,现在我们来模拟实现list,代码如下:

#pragma once
#include <iostream>
using namespace std;
#include <assert.h>namespace casso
{// List的节点类template<class T>struct ListNode{ListNode(const T& val = T()): _prev(nullptr), _next(nullptr), _val(val){}ListNode<T>* _prev;ListNode<T>* _next;T _val;};/*List 的迭代器迭代器有两种实现方式,具体应根据容器底层数据结构实现:1. 原生态指针,比如:vector2. 将原生态指针进行封装,因迭代器使用形式与指针完全相同,因此在自定义的类中必须实现以下方法:1. 指针可以解引用,迭代器的类中必须重载operator*()2. 指针可以通过->访问其所指空间成员,迭代器类中必须重载oprator->()3. 指针可以++向后移动,迭代器类中必须重载operator++()与operator++(int)至于operator--()/operator--(int)释放需要重载,根据具体的结构来抉择,双向链表可以向前             移动,所以需要重载,如果是forward_list就不需要重载--4. 迭代器需要进行是否相等的比较,因此还需要重载operator==()与operator!=()*/template<class T, class Ref, class Ptr>class ListIterator{typedef ListNode<T> Node;typedef ListIterator<T, Ref, Ptr> Self;// Ref 和 Ptr 类型需要重定义下,实现反向迭代器时需要用到public:typedef Ref Ref;typedef Ptr Ptr;public://// 构造ListIterator(Node* node = nullptr): _node(node){}//// 具有指针类似行为Ref operator*() { return _node->_val;}Ptr operator->() { return &(operator*()); }//// 迭代器支持移动Self& operator++(){_node = _node->_next;return *this;}Self operator++(int){Self temp(*this);_node = _node->_next;return temp;}Self& operator--(){_node = _node->_prev;return *this;}Self operator--(int){Self temp(*this);_node = _node->_prev;return temp;}//// 迭代器支持比较bool operator!=(const Self& l)const{ return _node != l._node;}bool operator==(const Self& l)const{ return _node != l._node;}Node* _node;};template<class Iterator>class ReverseListIterator{// 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的一个类型,而不是静态成员变量// 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量// 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的public:typedef typename Iterator::Ref Ref;typedef typename Iterator::Ptr Ptr;typedef ReverseListIterator<Iterator> Self;public://// 构造ReverseListIterator(Iterator it): _it(it){}//// 具有指针类似行为Ref operator*(){Iterator temp(_it);--temp;return *temp;}Ptr operator->(){return &(operator*());}//// 迭代器支持移动Self& operator++(){--_it;return *this;}Self operator++(int){Self temp(*this);--_it;return temp;}Self& operator--(){++_it;return *this;}Self operator--(int){Self temp(*this);++_it;return temp;}//// 迭代器支持比较bool operator!=(const Self& l)const{return _it != l._it;}bool operator==(const Self& l)const{return _it != l._it;}Iterator _it;};template<class T>class list{typedef ListNode<T> Node;public:// 正向迭代器typedef ListIterator<T, T&, T*> iterator;typedef ListIterator<T, const T&, const T&> const_iterator;// 反向迭代器typedef ReverseListIterator<iterator> reverse_iterator;typedef ReverseListIterator<const_iterator> const_reverse_iterator;public:///// List的构造list(){CreateHead();}list(int n, const T& value = T()){CreateHead();for (int i = 0; i < n; ++i)push_back(value);}template <class Iterator>list(Iterator first, Iterator last){CreateHead();while (first != last){push_back(*first);++first;}}list(const list<T>& l){CreateHead();// 用l中的元素构造临时的temp,然后与当前对象交换list<T> temp(l.begin(), l.end());this->swap(temp);}list<T>& operator=(list<T> l){this->swap(l);return *this;}~list(){clear();delete _head;_head = nullptr;}///// List的迭代器iterator begin() { return iterator(_head->_next); }iterator end() { return iterator(_head); }const_iterator begin()const { return const_iterator(_head->_next); }const_iterator end()const{ return const_iterator(_head); }reverse_iterator rbegin(){return reverse_iterator(end());}reverse_iterator rend(){return reverse_iterator(begin());}const_reverse_iterator rbegin()const{return const_reverse_iterator(end());}const_reverse_iterator rend()const{return const_reverse_iterator(begin());}///// List的容量相关size_t size() const{Node* cur = _head->_next;size_t count = 0;while (cur != _head){count++;cur = cur->_next;}return count;}bool empty() const{return _head->_next == _head;}void resize(size_t newsize, const T& data = T()){size_t oldsize = size();if (newsize <= oldsize){// 有效元素个数减少到newsizewhile (newsize < oldsize){pop_back();oldsize--;}}else{while (oldsize < newsize){push_back(data);oldsize++;}}}// List的元素访问操作// 注意:List不支持operator[]T& front(){return _head->_next->_val;}const T& front() const{return _head->_next->_val;}T& back(){return _head->_prev->_val;}const T& back() const{return _head->_prev->_val;}// List的插入和删除void push_back(const T& val) { insert(end(), val); }void pop_back() { erase(--end()); }void push_front(const T& val) { insert(begin(), val); }void pop_front() { erase(begin()); }// 在pos位置前插入值为val的节点iterator insert(iterator pos, const T& val){Node* pNewNode = new Node(val);Node* pCur = pos._node;// 先将新节点插入pNewNode->_prev = pCur->_prev;pNewNode->_next = pCur;pNewNode->_prev->_next = pNewNode;pCur->_prev = pNewNode;return iterator(pNewNode);}// 删除pos位置的节点,返回该节点的下一个位置iterator erase(iterator pos){// 找到待删除的节点Node* pDel = pos._node;Node* pRet = pDel->_next;// 将该节点从链表中拆下来并删除pDel->_prev->_next = pDel->_next;pDel->_next->_prev = pDel->_prev;delete pDel;return iterator(pRet);}void clear(){Node* cur = _head->_next;// 采用头删除删除while (cur != _head){_head->_next = cur->_next;delete cur;cur = _head->_next;}_head->_next = _head->_prev = _head;}void swap(casso::list<T>& l){std::swap(_head, l._head);}private:void CreateHead(){_head = new Node;_head->_prev = _head;_head->_next = _head;}private:Node* _head;};
}///
// 对模拟实现的list进行测试
// 正向打印链表
template<class T>
void PrintList(const casso::list<T>& l)
{auto it = l.begin();while (it != l.end()){cout << *it << " ";++it;}cout << endl;
}// 测试List的构造
void TestCassoList1()
{casso::list<int> l1;casso::list<int> l2(10, 5);PrintList(l2);int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };casso::list<int> l3(array, array + sizeof(array) / sizeof(array[0]));PrintList(l3);casso::list<int> l4(l3);PrintList(l4);l1 = l4;PrintList(l1);
}// PushBack()/PopBack()/PushFront()/PopFront()
void TestCassoList2()
{// 测试PushBack与PopBackcasso::list<int> l;l.push_back(1);l.push_back(2);l.push_back(3);PrintList(l);l.pop_back();l.pop_back();PrintList(l);l.pop_back();cout << l.size() << endl;// 测试PushFront与PopFrontl.push_front(1);l.push_front(2);l.push_front(3);PrintList(l);l.pop_front();l.pop_front();PrintList(l);l.pop_front();cout << l.size() << endl;
}// 测试insert和erase
void TestCassoList3()
{int array[] = { 1, 2, 3, 4, 5 };casso::list<int> l(array, array + sizeof(array) / sizeof(array[0]));auto pos = l.begin();l.insert(l.begin(), 0);PrintList(l);++pos;l.insert(pos, 2);PrintList(l);l.erase(l.begin());l.erase(pos);PrintList(l);// pos指向的节点已经被删除,pos迭代器失效cout << *pos << endl;auto it = l.begin();while (it != l.end()){it = l.erase(it);}cout << l.size() << endl;
}// 测试反向迭代器
void TestCassoList4()
{int array[] = { 1, 2, 3, 4, 5 };casso::list<int> l(array, array + sizeof(array) / sizeof(array[0]));auto rit = l.rbegin();while (rit != l.rend()){cout << *rit << " ";++rit;}cout << endl;const casso::list<int> cl(l);auto crit = l.rbegin();while (crit != l.rend()){cout << *crit << " ";++crit;}cout << endl;
}

2.2 list的反向迭代器
        通过前面例子知道,反向迭代器的++就是正向迭代器的--,反向迭代器的--就是正向迭代器的++,因此反向迭代器的实现可以借助正向迭代器,即:反向迭代器内部可以包含一个正向迭代器,对正向迭代器的接口进行包装即可。

template<class Iterator> 
class ReverseListIterator 
{// 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的类型,而不是静态成员变量   // 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量// 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的 
public:typedef typename Iterator::Ref Ref;typedef typename Iterator::Ptr Ptr;typedef ReverseListIterator<Iterator> Self; 
public://// 构造ReverseListIterator(Iterator it) : _it(it){}          //// 具有指针类似行为Ref operator*(){Iterator temp(_it);--temp;return *temp;}    Ptr operator->(){return &(operator*());}//// 迭代器支持移动Self& operator++(){--_it;return *this;}Self operator++(int){Self temp(*this);--_it;return temp;}Self& operator--(){++_it;return *this;}Self operator--(int){Self temp(*this);++_it;return temp;}//// 迭代器支持比较bool operator!=(const Self& l) const{return _it != l._it;}bool operator==(const Self& l) const{return _it != l._it;}Iterator _it;
};

三、list和vector的对比

        vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不同,其主要不同如下:

vectorlist
底层结构动态顺序表,一段连续空间带头结点的双向循环链表
随机访问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素 效率O(N)
插入和删除任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低任意位置插入和删除效率高,不需要搬移元素,时间复杂度为 O(1)
空间利用率底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高底层节点动态开辟,小节点容易造成内存碎片,空间利用率低, 缓存利用率低
迭代器原生态指针对原生态指针(节点指针)进行封装
迭代器失效在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效插入元素不会导致迭代器失效, 删除元素时,只会导致当前迭代器失效,其他迭代器不受影响
使用场景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随机访问

最后:

list的构造使用、迭代器的使用、插入和删除代码演示:

#include <iostream>
using namespace std;
#include <list>
#include <vector>// list的构造
void TestList1()
{list<int> l1;                         // 构造空的l1list<int> l2(4, 100);                 // l2中放4个值为100的元素list<int> l3(l2.begin(), l2.end());  // 用l2的[begin(), end())左闭右开的区间构造l3list<int> l4(l3);                    // 用l3拷贝构造l4// 以数组为迭代器区间构造l5int array[] = { 16,2,77,29 };list<int> l5(array, array + sizeof(array) / sizeof(int));// 列表格式初始化C++11list<int> l6{ 1,2,3,4,5 };// 用迭代器方式打印l5中的元素list<int>::iterator it = l5.begin();while (it != l5.end()){cout << *it << " ";++it;}       cout << endl;// C++11范围for的方式遍历for (auto& e : l5)cout << e << " ";cout << endl;
}// list迭代器的使用
// 注意:遍历链表只能用迭代器和范围for
void PrintList(const list<int>& l)
{// 注意这里调用的是list的 begin() const,返回list的const_iterator对象for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it){cout << *it << " ";// *it = 10; 编译不通过}cout << endl;
}void TestList2()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array + sizeof(array) / sizeof(array[0]));// 使用正向迭代器正向list中的元素// list<int>::iterator it = l.begin();   // C++98中语法auto it = l.begin();                     // C++11之后推荐写法while (it != l.end()){cout << *it << " ";++it;}cout << endl;// 使用反向迭代器逆向打印list中的元素// list<int>::reverse_iterator rit = l.rbegin();auto rit = l.rbegin();while (rit != l.rend()){cout << *rit << " ";++rit;}cout << endl;
}// list插入和删除
// push_back/pop_back/push_front/pop_front
void TestList3()
{int array[] = { 1, 2, 3 };list<int> L(array, array + sizeof(array) / sizeof(array[0]));// 在list的尾部插入4,头部插入0L.push_back(4);L.push_front(0);PrintList(L);// 删除list尾部节点和头部节点L.pop_back();L.pop_front();PrintList(L);
}// insert /erase 
void TestList4()
{int array1[] = { 1, 2, 3 };list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));// 获取链表中第二个节点auto pos = ++L.begin();cout << *pos << endl;// 在pos前插入值为4的元素L.insert(pos, 4);PrintList(L);// 在pos前插入5个值为5的元素L.insert(pos, 5, 5);PrintList(L);// 在pos前插入[v.begin(), v.end)区间中的元素vector<int> v{ 7, 8, 9 };L.insert(pos, v.begin(), v.end());PrintList(L);// 删除pos位置上的元素L.erase(pos);PrintList(L);// 删除list中[begin, end)区间中的元素,即删除list中的所有元素L.erase(L.begin(), L.end());PrintList(L);
}// resize/swap/clear
void TestList5()
{// 用数组来构造listint array1[] = { 1, 2, 3 };list<int> l1(array1, array1 + sizeof(array1) / sizeof(array1[0]));PrintList(l1);// 交换l1和l2中的元素list<int> l2;l1.swap(l2);PrintList(l1);PrintList(l2);// 将l2中的元素清空l2.clear();cout << l2.size() << endl;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/32092.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法挨揍日记】day01——双指针算法_移动零、 复写零

283.移动零 283. 移动零https://leetcode.cn/problems/move-zeroes/ 题目&#xff1a; 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意 &#xff0c;必须在不复制数组的情况下原地对数组进行操作。 …

生信豆芽菜-火山图绘制使用说明

网站&#xff1a;http://www.sxdyc.com/visualsVolcano 一、火山图简介 火山图是散点图的一种&#xff0c;它将统计测试中的统计显著性量度&#xff08;如p value&#xff09;和变化幅度&#xff08;logFC&#xff09;相结合&#xff0c;能够快速直观地识别那些变化幅度较大且具…

13个Python最佳编程技巧,越早知道越好

每天我们都会面临许多需要高级编码的编程挑战。你不能用简单的 Python 基本语法来解决这些问题。在本文中&#xff0c;我将分享 13 个高级 Python 脚本&#xff0c;它们可以成为你项目中的便捷工具。如果你目前还用不到这些脚本&#xff0c;你可以先添加收藏&#xff0c;以备留…

springMVC 程序开发

目录 一. 认识 springMVC spring&#xff0c;springBoot&#xff0c;springMVC的关系 二. springMVC 的连接和获取参数 1. 注解分析&#xff08;不带参数&#xff09; 2. 获取参数 3. 获取对象参数 4. 重命名功能 5. 获取 JSON 对象 6. 通过 path 文件路径来传递参数…

新版Android Studio模拟器浮动

&#xff08;水一篇&#xff0c;但其实很多入门同学不知道&#xff09; 安装新版Andorid Studio后会发现模拟器是内嵌在AS中的&#xff0c;如何让她浮动

[C++项目] Boost文档 站内搜索引擎(4): 搜索的相关接口的实现、线程安全的单例index接口、cppjieba分词库的使用、综合调试...

有关Boost文档搜索引擎的项目的前三篇文章, 已经分别介绍分析了: 项目背景: &#x1fae6;[C项目] Boost文档 站内搜索引擎(1): 项目背景介绍、相关技术栈、相关概念介绍…文档解析、处理模块parser的实现: &#x1fae6;[C项目] Boost文档 站内搜索引擎(2): 文档文本解析模块…

C++学习| MFC简单入门

前言&#xff1a;因为接手了CMFC的程序&#xff0c;所以需要对MFC编程方面有所了解。 C之MFC简单入门 MFC相关的概念MFCWIN32QT MFC项目基本操作MFC项目创建MFC项目文件解读界面和代码数据交互——加法器 MFC相关的概念 MFC MFC&#xff08;Microsoft Foundation Classes微软…

MySQL中基础查询语句

用户表user数据如下&#xff1a; iddevice_idgenderageuniversityprovince12138male21北京大学Beijing23214male复旦大学Shanghai36543famale20北京大学Deijing42315female 23 浙江大学ZheJiang55432male25山东大学Shandong 1&#xff0c;写出ddl语句创建如上表&#xff0c;…

CEC2013(MATLAB):淘金优化算法GRO求解CEC2013的28个函数

一、淘金优化算法GRO 淘金优化算法&#xff08;Gold rush optimizer&#xff0c;GRO&#xff09;由Kamran Zolf于2023年提出&#xff0c;其灵感来自淘金热&#xff0c;模拟淘金者进行黄金勘探行为。淘金优化算法&#xff08;Gold rush optimizer&#xff0c;GRO&#xff09;提…

centos7实现负载均衡

目录 一、基于 CentOS 7 构建 LVS-DR 集群。 1.1 配置lvs负载均衡服务 1.1.1 下载ipvsadm 1.1.2 增加vip 1.1.3 配置ipvsadm 1.2 配置rs1 1.2.1 编写测试页面 1.2.2 手工在RS端绑定VIP、添加路由 1.2.3 抑制arp响应 1.3 配置rs2 1.4 测试 二、配置nginx负载…

AMEYA360:尼得科科宝旋转型DIP开关系列汇总

旋转型DIP开关 S-4000 电路&#xff1a;BCD(十进制) 代码格式&#xff1a;实码 安装类型&#xff1a;表面贴装 调整位置&#xff1a;顶部 可水洗&#xff1a;无 端子类型&#xff1a;J 引线, 鸥翼型 旋转型DIP开关 SA-7000 电路&#xff1a;BCD(十进制), BCH(十六进制) 代码格式…

Java线程池

线程池 1. 概念2. 工作流程3. ThreadPoolExecutor参数 1. 概念 线程池是一种利用池化技术思想来实现的线程管理技术&#xff0c;主要是为了复用线程、便利地管理线程和任务、并将线程的创建和任务的执行解耦开来。我们可以创建线程池来复用已经创建的线程来降低频繁创建和销毁…

Detector定位算法在FPGA中的实现——section1 原理推导

关于算法在FPGA中的实现&#xff0c;本次利用业余的时间推出一个系列章节&#xff0c;专门记录从算法的推导、Matlab的实现、FPGA的移植开发与仿真做一次完整的FPGA算法开发&#xff0c;在此做一下相关的记录和总结&#xff0c;做到温故知新。 这里以Detector在Global Coordina…

Ansible从入门到精通【六】

大家好&#xff0c;我是早九晚十二&#xff0c;目前是做运维相关的工作。写博客是为了积累&#xff0c;希望大家一起进步&#xff01; 我的主页&#xff1a;早九晚十二 专栏名称&#xff1a;Ansible从入门到精通 立志成为ansible大佬 ansible templates 模板&#xff08;templa…

利用状态监测和机器学习提高冷却塔性能的具体方法

在现代工业生产中&#xff0c;冷却塔扮演着至关重要的角色&#xff0c;它们的性能直接影响着工艺流程的稳定性和效率。为了确保冷却塔的正常运行和减少系统故障&#xff0c;状态监测和机器学习成为了关键技术。 图.冷却塔&#xff08;PreMaint&#xff09; 在前文《基于人工智…

MySQL_约束、多表关系

约束 概念&#xff1a;就是用来作用表中字段的规则&#xff0c;用于限制存储在表中的数据。 目的&#xff1a;保证数据库中数据的正确性&#xff0c;有效性和完整性。 约束演示 #定义一个学生表&#xff0c;表中要求如下&#xff1a; #sn 表示学生学号&#xff0c;要求使用 …

Python测试框架pytest:常用参数、查找子集、参数化、跳过

Pytest是一个基于python的测试框架&#xff0c;用于编写和执行测试代码。pytest主要用于API测试&#xff0c;可以编写代码来测试API、数据库、UI等。 pytest是一个非常成熟的全功能的Python测试框架&#xff0c;主要有以下几个优点&#xff1a; 简单灵活&#xff0c;容易上手。…

【input】关于input 元素的type类型及相关作用

传统类型&#xff1a; text&#xff1a;用于输入单行文本。 <input type"text" name"username">password&#xff1a;用于输入密码&#xff0c;输入的内容会被隐藏。 <input type"password" name"password">checkbox&a…

React Native 样式布局基础知识

通过此篇笔记能够学习到如下的几个知识点 在 React Native 中使用样式的一些细节了解 React Native 的 Flex 布局概念了解 React Native 的 flex 布局属性React Native 如何添加多样式属性React Native 中绝对布局和相对布局 React Native 中的 Flex 布局概念 1、主轴和交叉…