邻接矩阵和邻接表的使用

邻接矩阵和邻接表的使用

邻接矩阵

为了遍历一个图,我们使用了邻接矩阵,及用ai,ja_{i,j}ai,j表示由a到b的边权
注:若这两个点不相连或i=ji=ji=j,那么这个值就会设定为一个非正常的值,以便遍历时特判不走这条边
使用:

scanf("%d%d%d",&x,&y,&z);//x指向y,边权为z
a[i][j]=z;b[1] = 0;
for(int i=1;i<=n;++i)//总共n个点if (a[1][i]) b[i]=b[1]+a[1][i];//到点i

邻接表

使用邻接矩阵会有许多不足之处,如空间时间浪费太多
所以我们又使用了另一种存储方法——邻接表
我们定义如下
在这里插入图片描述
我们定义head_A为A读入的最后一条边(为了便于分辨,把数字的编号写成大写英文字母)
ak.toa_k.toak.tokkk这条边连向的点
ak.la_k.lak.lkkk这条边的边权
ak.nexta_k.nextak.next为和kkk源头相等的上一条边
使用:

scanf("%d%d%d",&x,&y,&z);//读入
a[++tot].to=y;//tot是这条边的编号,指向y
a[tot].l=z;//边长为z
a[tot].next=head[x];//它的上一条边是加载它之前的最后一条边
head[x]=tot//现在的最后一条边是它b[1] = 0;
for(int i=head[1];i;i=a[i].next)//从1的最后一条边开始遍历,每一次遍历上一条边,直到没有上一条边,及遍历完
{x=1;//源头y=a[i].to;//指向哪z=a[i].l;//边权
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/320208.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一个迄今为止最快的并发键值存储库FASTER诞生

FASTER在过去十年中&#xff0c;云中的数据密集型应用程序和服务有了巨大的增长。数据在各种边设施&#xff08;例如&#xff0c;设备&#xff0c;浏览器和服务器&#xff09;上创建&#xff0c;并由云应用程序处理用来获得数据价值或做出决策。应用程序和服务可以处理收集的数…

牛客网【每日一题】4月30日题目精讲 换个角度思考

链接&#xff1a; 文章目录题目描述题解&#xff1a;主席树做法&#xff1a;代码&#xff1a;树状数组&#xff1a;更扯淡的方法&#xff01;&#xff01;&#xff01;时间限制&#xff1a;C/C 1秒&#xff0c;其他语言2秒 空间限制&#xff1a;C/C 262144K&#xff0c;其他语言…

三元环计数四元环计数

三元环计数 问题 给出一张n个点m条边的无向图&#xff0c;问图中有多少个三元组{ u , v , w } &#xff0c;满足图中存在 { (u,v) , (v,w) , (w,u) } 三条边。 求解 Step1 定向 将所有点按 度数 从小到大排序&#xff0c;如果度数相同按 点编号 从小到大排序&#xff0c;u…

牛客网【每日一题】5月1日题目 [SCOI2012]滑雪与时间胶囊

链接&#xff1a; 时间限制&#xff1a;C/C 2秒&#xff0c;其他语言4秒 空间限制&#xff1a;C/C 262144K&#xff0c;其他语言524288K 64bit IO Format: %lld题目描述 a180285非常喜欢滑雪。他来到一座雪山&#xff0c;这里分布着M条供滑行的轨道和N个轨道之间的交点&#x…

漫谈单体架构与微服务架构(上):单体架构

最近微服务架构特别火爆&#xff0c;就跟人工智能、区块链一样&#xff0c;软件架构设计如果不提微服务&#xff0c;感觉就像是与世界先进的架构风格和开发技术脱了节似的&#xff0c;各方各面都无法彰显高大上的气质。本来再打算使用一套系列文章来讨论微服务的方方面面&#…

ASP.NET Core应用程序的参数配置及使用

应用程序的开发不仅仅是写代码这点事情。假设你正在开发一个能够支持多次部署的微服务&#xff0c;此时你就需要有一个合理的应用程序配置方案&#xff0c;以便在开发和生产环境中能够方便地选用不同的配置参数&#xff0c;并且能够在部署到容器服务&#xff08;比如ACS或者Kub…

“Shopee杯” e起来编程暨武汉大学2020年大学生程序设计大赛决赛(重现赛)

比赛链接 文章目录A题 A Simple Problem about election题目描述题解&#xff1a;代码&#xff1a;D题 Deploy the medical team题意&#xff1a;题解&#xff1a;代码&#xff1a;F题 Figure out the sequence题意&#xff1a;题解&#xff1a;代码A题 A Simple Problem about…

RabbitMQ一个简单可靠的方案(.Net Core实现)

前言最近需要使用到消息队列相关技术&#xff0c;于是重新接触RabbitMQ。其中遇到了不少可靠性方面的问题&#xff0c;归纳了一下&#xff0c;大概有以下几种&#xff1a;1. 临时异常&#xff0c;如数据库网络闪断、http请求临时失效等&#xff1b;2. 时序异常&#xff0c;如A任…

牛牛染颜色

链接&#xff1a; 文章目录题目描述题意&#xff1a;题解&#xff1a;核心代码&#xff1a;时间限制&#xff1a;C/C 1秒&#xff0c;其他语言2秒 空间限制&#xff1a;C/C 131072K&#xff0c;其他语言262144K 64bit IO Format: %lld题目描述 牛牛最近得到了一颗树&#xff0…

.netcore consul实现服务注册与发现-单节点部署

一、Consul的基础介绍Consul是HashiCorp公司推出的开源工具&#xff0c;用于实现分布式系统的服务发现与配置。与其他分布式服务注册与发现的方案&#xff0c;比如 Airbnb的SmartStack等相比&#xff0c;Consul的方案更“一站式”&#xff0c;内置了服务注册与发现框 架、分布一…

分布式事务解决方案以及 .Net Core 下的实现(上)

数据一致性是构建业务系统需要考虑的重要问题 &#xff0c; 以往我们是依靠数据库来保证数据的一致性。但是在微服务架构以及分布式环境下实现数据一致性是一个很有挑战的的问题。最近在研究分布式事物&#xff0c;分布式的解决方案有很多解决方案&#xff0c;也让我在研究的同…

微软MVP张善友告诉你,微服务选型要注意这些地方

周六的下午&#xff0c;广州周大福金融中心的写字楼静悄悄的&#xff0c;53楼的实盈多功能会议室却异常火爆&#xff0c;热闹非凡。来自广州各大科技公司的技术小伙伴们齐聚一堂&#xff0c;他们都在期待着一个人&#xff0c;那就是——微软MVP张善友和他带来的 .NET Core 微服…

像鱼

链接&#xff1a; 时间限制&#xff1a;C/C 1秒&#xff0c;其他语言2秒 空间限制&#xff1a;C/C 262144K&#xff0c;其他语言524288K 64bit IO Format: %lld题目描述 给你一个边长为 n 的用硬币摆成的实心三角形&#xff0c;请问把他倒过来最少需要多少步&#xff1f; 例子…

[ZJOI2005]午餐(贪心+dp)

首先若只有一个窗口&#xff0c;利用贪心&#xff0c;按吃饭时间从大到小排序即可 正确性证明&#xff1a; 定义 eat[i] 第i个人的吃饭时间&#xff0c;time[i] 第i个人的打饭时间 延长时间T[i]max(eat[i]- ∑ji1ntimej\sum\limits_{ji1}^ntime_jji1∑n​timej​ ,0) 最后…

【图论】【模板】静态仙人掌(luogu 5236)

【模板】静态仙人掌 题目大意 给你一个无向仙人掌图&#xff08;保证每条边至多出现在一个简单回路中的无向图&#xff09;&#xff0c;问你两个点之间的最短路距离 输入样例#1 9 10 2 1 2 1 1 4 1 3 4 1 2 3 1 3 7 1 7 8 2 7 9 2 1 5 3 1 6 4 5 6 1 1 9 5 7输出样例#1 5 …

SCF: 简单配置门面

Simple Configuration Facade, 简写为 SCF。是 代码 和 外部配置 (properties文件, 环境变量&#xff0c;系统/命令行参数, yaml文件, 等等)之间的一层抽象. 命名上和另一个著名组件slf4j (Simple Logging Facade for Java)相似, 在配置领域的地位也和slf4j &#xff08;.NET可…

【矩阵乘法】【倍增】美食家(luogu 6772)

美食家 题目大意 给你一个有向图&#xff0c;边权为经过所需时间 每个点有一个点权&#xff0c;有些点还有有特殊的点权 当你到达一个点后&#xff0c;可以获得该点的点权&#xff08;重复经过可以重复获得&#xff0c;但不能停留&#xff09;&#xff0c;若在某个时间到某个…

.net core实践系列之短信服务-为什么选择.net core(开篇)

前言从今天我将会写.net core实战系列&#xff0c;以我最近完成的短信服务作为例子。该系列将会尽量以最短的时间全部发布出来。源码也将优先开源出来给大家。源码地址&#xff1a;https://github.com/SkyChenSky/Sikiro.SMS.NET CORE简介ASP.NET Core 是一个跨平台的高性能开源…

.netcore consul实现服务注册与发现-集群完整版

一、Consul的集群介绍Consul Agent有两种运行模式&#xff1a;Server和Client。这里的Server和Client只是Consul集群层面的区分&#xff0c;与搭建在Cluster之上的应用服务无关&#xff0c; 以Server模式运行的Consul Agent节点用于维护Consul集群的状态&#xff0c;官方建议每…

浅谈surging服务引擎中的rabbitmq组件和容器化部署

1、前言上个星期完成了surging 的0.9.0.1 更新工作&#xff0c;此版本通过nuget下载引擎组件&#xff0c;下载后&#xff0c;无需通过代码build集成&#xff0c;引擎会通过Sidecar模式自动扫描装配异构组件来构建服务引擎&#xff0c;而这篇将介绍浅谈surging服务引擎中的rabbi…