ocelot 自定义认证和授权

Intro

最近又重新启动了网关项目,服务越来越多,每个服务都有一个地址,这无论是对于前端还是后端开发调试都是比较麻烦的,前端需要定义很多 baseUrl,而后端需要没有代码调试的时候需要对每个服务的地址都收藏着或者记在哪里,用的时候要先找到地址,甚是麻烦,有了网关之后,所有的 API 就有了统一的入口,对于前端来说就不需要维护那么多的 baseUrl,只需要网关的地址即可,对于后端来说也是同样的。

Ocelot 简介

Ocelot是一个用.NET Core实现并且开源的API网关,它功能强大,包括了:路由、请求聚合、服务发现、认证、鉴权、限流熔断等功能,这些功能只都只需要简单的配置即可完成。

640?wx_fmt=png

自定义认证授权

自定义认证授权思想,这里的示例是一个基于用户角色授权的示例:

  1. 基于 url 以及 请求 Method 查询需要的权限

  2. 如果不需要用户登录就可以访问,就直接往下游服务转发

  3. 如果需要权限,判断当前登录用户的角色是否可以以当前 Method 访问当前路径

  4. 如果可以访问就转发到下游服务,如果没有权限访问根据用户是否登录,已登录返回 403 Forbidden,未登录返回 401 Unauthorized

Ocelot 的 认证授权不能满足我的需要,于是就自己扩展了一个 Ocelot 的中间件

示例代码

640?wx_fmt=png

640?wx_fmt=png

认证授权之后

经过上面的认证授权之后,就可以往下游转发请求了,下游的服务有的可能会需要判断用户的角色或者需要根据用户的 userId 或者 Name 或者 邮箱去检查某些数据的权限,这里就需要把在网关完成认证之后,得到的用户信息传递给下游服务,这里我选择的是通过请求头把用户信息从网关服务传递到下游服务, Ocelot 可以把 Claims 中的信息转换到 Header ,详细参考Ocelot文档,但是实现有个bug,如果有多个值他只会取第一个,详见issue,可以自己扩展一个 ocelot 的中间件替换掉原有的中间件。

传递到下游服务之后,下游服务在需要用户信息的地方就可以从请求头中获取用户信息,如果下游服务比较复杂,不方便改动的话可以实现一个自定义的请求头认证,可以参考我的这一篇文章ASP.NET Core 自定义认证方式--请求头认证

原文地址:https://www.cnblogs.com/weihanli/p/custom-authentication-authorization-in-ocelot.html

.NET社区新闻,深度好文,欢迎访问公众号文章汇总 http://www.csharpkit.com
640?wx_fmt=jpeg


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/316879.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CF765F Souvenirs(势能线段树)

CF765F Souvenirsproblemsolutioncodeproblem 题目链接 solution 这个势能线段树简直是太巧妙了!!!( ఠൠఠ )ノ 将询问按右端点升序离线下来。 对于每一个右端点 rrr,维护 ansimin⁡{∣ai−aj∣,j∈[i,r]}ans_i\m…

AcWing 220. 最大公约数

AcWing 220. 最大公约数 题意&#xff1a; 题解&#xff1a; 题目就变成了AcWing 201. 可见的点 当然有微调&#xff0c;因为可见的点里面是从0开始&#xff0c;本题从1开始&#xff0c;所以本题中phi[1]认为是0 AcWing 201. 可见的点的题解 代码&#xff1a; #include<b…

欧拉函数(简单介绍+例题)

Acwing视频讲解 欧拉函数&#xff1a;正整数n&#xff0c;欧拉函数是小于n的正整数中与n互质的数的数目 Np1a1 * p1a2 * p1a3 * …* p1ak 如果pj是i的最小质因子 红色区域一样 经推导得&#xff1a;phi[i * pj] phi[i] * pj 如果pj不是i的最小质因子 经推导&#xff1a;phi[…

程序员过关斩将--你的面向接口编程一定对吗?

菜菜哥&#xff0c;出大事啦怎么了&#xff0c;你和男票分手了&#xff1f;很正常&#xff0c;谁让你男票是产经经理呢不是啦&#xff0c;是我做的一个小游戏&#xff0c;需求又变了&#xff0c;程序我快改不动了说来让我欢乐一下&#xff1f;菜菜哥&#xff0c;咱两还能不能好…

Codeforces:779(div2)

前言 solve 4 rnk247 占了罚时的便宜。 CF不占罚时便宜就会被罚时占便宜 感觉这场似乎都是性质题&#xff0c;一眼看出性质就秒了&#xff0c;看不出就很难做出来了。 C似乎卡了很多人。但我做起来还好。 D2做不出来有些懊恼。 E是妙题。 题目 A 水题&#xff0c;保证male…

我们为什么要搞长沙.NET技术社区(4)

我们为什么要搞长沙.NET技术社区&#xff08;4&#xff09;邹溪源&#xff0c;2019年3月7日Ps:文中的.NET 包括且不限定于传统.NET Framework技术和.NET Core技术。1. 楔子昨天&#xff08;2019年3月6日&#xff09;晚餐时间&#xff0c;有幸得到长沙技术圈资深.NET开发者出生…

P1290 欧几里德的游戏

P1290 欧几里德的游戏 题意&#xff1a; 给定两个正整数 M 和 N&#xff0c;从 Stan 开始&#xff0c;从其中较大的一个数&#xff0c;减去较小的数的正整数倍&#xff0c;当然&#xff0c;得到的数不能小于 0。然后是 Ollie进行同样的操作&#xff0c;直到一个人得到0&#…

C#机器学习之判断日报是否合格

原文作者&#xff1a;心莱科技肖鑫简单来说机器学习的核心步骤在于“获取学习数据&#xff1b;选择机器算法&#xff1b;定型模型&#xff1b;评估模型&#xff0c;预测模型结果”&#xff0c;下面本人就以判断日报内容是否合格为例为大家简单的阐述一下C#的机器学习。第一步&a…

SignalR2结合ujtopo实现拓扑图动态变化

上一篇文章基于jTopo的拓扑图设计工具库ujtopo&#xff0c;介绍了拓扑设计工具&#xff0c;这一篇我们使用SignalR2结合ujtopo实现拓扑图的动态变化。仅仅作为演示&#xff0c;之前的文章SignalR2简易数据看板演示&#xff0c;用一个小的示例演示了SignalR作为数据看板的用法&a…

Ocelot 入门Demo系列(01-Ocelot极简单Demo及负载均衡的配置)

来源&#xff1a;https://www.cnblogs.com/7tiny/p/10493805.html【前言】Ocelot是一个用.NET Core实现并且开源的API网关&#xff0c;它功能强大&#xff0c;包括了&#xff1a;路由、请求聚合、服务发现、认证、鉴权、限流熔断、并内置了负载均衡器与Service Fabric、Butterf…

博弈论(基础概念+例题)

博弈论(b站视频) 文章目录一些概念以Nim游戏为例Nim游戏介绍定义 必败/必胜局面必败/必胜局面的判定引理Nim游戏判定引理的等价命题有向图游戏对判定引理的数学描述-Sg函数有向图游戏的和题目&#xff1a;[有向图游戏][有向图游戏的和][构造/转化类]一些概念 以Nim游戏为例 Ni…

.NET Core 3.0 linux 部署小贴士

dotnet core 3.0 目前还是测试版&#xff0c;在linux下安装 sdk 需要有一些注意事项1.下载urlhttps://dotnet.microsoft.com/download/thank-you/dotnet-sdk-3.0.100-preview-009812-linux-x64-binaries2.安装指令mkdir -p $HOME/dotnet && tar zxf dotnet-sdk-3.0.100…

PuppeteerSharp: 更友好的 Headless Chrome C# API

前端就有了对 headless 浏览器的需求&#xff0c;最多的应用场景有两个UI 自动化测试&#xff1a;摆脱手工浏览点击页面确认功能模式爬虫&#xff1a;解决页面内容异步加载等问题也就有了很多杰出的实现&#xff0c;前端经常使用的莫过于 PhantomJS 和 selenium-webdriver&…

中国.NET:东莞+长沙.NET俱乐部现场花絮及合肥、苏州、上海等地活动预

《传承有序》与微软技术的发展历程相似&#xff0c;微软俱乐部的发展经历着沉沉浮浮&#xff0c;曾经随着微软走向封闭与固执&#xff0c;.NET社区年轻一代的声音被忽略&#xff0c;.NET社区后继无人。社区的沉默是可怕的&#xff0c;很多社区沉寂消亡。但是在2018年&#xff0…

【AcWing 235. 魔法珠

【AcWing 235. 魔法珠 题意&#xff1a; 有n堆魔法珠&#xff0c;第i堆有ai个&#xff0c;两个人轮流进行以下操作&#xff1a; 当轮到某人操作时&#xff0c;如果每堆中魔法珠的数量均为 1&#xff0c;那么他就输了。 问谁赢谁输 题解&#xff1a; 经典博弈论问题 注意本…

Abp vNext 切换MySql数据库

Abp vNext是Abp的下一代版本&#xff0c;目前还在经一步完善&#xff0c;代码已经全部重写了&#xff0c;好的东西保留了下来&#xff0c;去除了很多笨重的东西&#xff0c;从官宣来看&#xff0c;Abp vNext主要是为了以后微服务架构而诞生的。从源码来看&#xff0c;Abp vNext…

采用.NET CORE的全异步模式打造一款免费的内网穿透工具--NSmartProxy

什么是NSmartProxy&#xff1f;NSmartProxy是一款免费的内网穿透工具。特点跨平台&#xff0c;客户端和服务端均可运行在MacOS&#xff0c;Linux&#xff0c;Windows系统上&#xff1b;使用方便&#xff0c;配置简单&#xff1b;多端映射&#xff0c;一个NSmart Proxy客户端可以…

Acwing 236. 格鲁吉亚和鲍勃(博弈论妙题)

Acwing 236. 格鲁吉亚和鲍勃 题意&#xff1a; 一排网格&#xff0c;将网格从左到右依次编号 1,2,3&#xff0c;…&#xff0c;并将 N 个西洋棋棋子放在不同的网格上&#xff0c;如下图所示&#xff1a; 两个人轮流移动棋子 每次玩家选择一个棋子&#xff0c;并将其向左移动…

.NET Core 跨平台 串口通讯 ,Windows/Linux 串口通讯

1&#xff0c;前言开发环境&#xff1a;在 Visual Studio 2017&#xff0c;.NET Core 2.x串口通讯用于设备之间&#xff0c;传递数据&#xff0c;物联网设备中广泛使用串口方式连接通讯&#xff0c;物联网通讯协议 &#xff1a;Modbus 协议 ASCII、RTU、TCP模式是应用层的协议&…

Game of Cards Gym - 102822G

Game of Cards Gym - 102822G 题意&#xff1a; 小兔子和小马喜欢玩奇怪的纸牌游戏。现在&#xff0c;他们正在玩一种叫做0123游戏的纸牌游戏。桌子上有几张牌。其中c0标记为0&#xff0c;c1标记为1&#xff0c;c2标记为2&#xff0c;c3标记为3。小兔子和小马轮流玩游戏&…