VS, VS Code, VS Online, VS xxx, 你都分清了吗?

首先说说部分童鞋容易混淆的 Visual Studio 和 Visual Studio Code 吧。其实,它们俩的关系,就相当于 Java 和 JavaScript,没啥关系。

再说说 Visual Studio Online。这就复杂了。历史上,出现过两个 Visual Studio Online,不过他们也都和 Visual Studio 没啥关系,并不是 Web 版的 Visual Studio。

关于第一个 Visual Studio Online,其实就是 Visual Studio Team Service 的前身。2015 年,Visual Studio Online (VSO) 改名为 Visual Studio Team Service (VSTS)。而 Visual Studio Team Service 又是如今的 Azure DevOps 的前身。2018 年,Visual Studio Team Service 改名为 Azure DevOps。

关于第二个 Visual Studio Online,其实是 2019 年宣布的 Web 版 Visual Studio Code。(希望不会再改名了。)

然后再说说 Visual Studio Live Share 和 Visual Studio IntelliCode,他们倒是和 Visual Studio 有关系了。简单来说,他们是 Visual Studio 和 Visual Studio Code 的插件。Visual Studio Live Share 可以用来进行实时的团队编程和调试。Visual Studio IntelliCode 通过 AI 赋能,可以进行智能的代码提示。

最后,再说说韩老师所在的部门,叫 Visual Studio China。和 Visual Studio 其实也没啥关系。做的内容有 IoT, Java on Azure, Azure SignalR Service, Azure SDK, Azure CLI 等等。最近正在热招,欢迎找我内推~

[内推] 微软 Azure Management Experience 最新热招职位,多语言,多岗位

[内推] 微软热招 IoT 开发工程师,万物互联的时代即将到来!

640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314121.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java修炼之路——基础篇——Java关键字

1:transient 当对象被序列化时,transient阻止其修饰的对象进行序列化;当反序列化时,此对象的值不会被恢复。 2:instanceof 判断引用指向的对象,是不是某个类及其子类的实例对象; class Person …

.NetCore从零开始使用Skywalking分布式追踪系统

将本文从0开始搭建两个webapi项目,使用Skywalking来追踪他们之间的调用关系及响应时间。开发环境为VisualStudio20191:安装Skywalking,可参考:https://www.cnblogs.com/sunyuliang/p/11422576.html,本列中搭建好后的Skywalking服务…

P3723 [AH2017/HNOI2017]礼物(FFT)

P3723 [AH2017/HNOI2017]礼物 式子化简 ∑i1n(xi−yj)2\sum_{i 1} ^{n} (x_i- y_j) ^2\\ i1∑n​(xi​−yj​)2 我们对第一个手环ccc,相当于(xic−yi)2(x_i c - y_i) ^ 2(xi​c−yi​)2,对第二个手环ccc相当于(xi−yi−c)2(x_i - y_i - c) ^2(xi​−…

CF623E Transforming Sequence(多项式/倍增fft/动态规划)

CF623E Transforming Sequence 经典的倍增NTT题目,但是由于万恶的模数导致这道题变成了倍增MTT 要求n个数前缀或严格递增的序列个数,一共有k位。 然后我们考虑进行dp,然后我的思路就是fi,jf_{i,j}fi,j​表示前i位在k位中有j位的方案数&…

2019-02-26-算法-进化(字符串转换成整数)

题目描述: 请你来实现一个 atoi 函数,使其能将字符串转换成整数。 首先,该函数会根据需要丢弃无用的开头空格字符,直到寻找到第一个非空格的字符为止。 当我们寻找到的第一个非空字符为正或者负号时,则将该符号与之后…

通过Service访问应用 (1)

目录通过Service访问应用 通过Pod IP访问应用 通过ClusterIP Service在集群内部访问 通过Service访问应用通过之前的操作,应用部署完成了,我们的Demo网站已经成功启动了,那么如何访问网站呢?通过Pod IP访问应用我们可以通过Pod IP…

P4239 任意模数多项式乘法逆(多项式/ MTT)

P4239 任意模数多项式乘法逆 这个题目简直就是毒瘤&#xff0c;不过还好我们可以使用vector封装要不然真的没法看&#xff0c;现在我们就会用vector封装MTT了&#xff0c;然后有一个代码细节就是这里的求逆还是在模意义下的&#xff0c;所以我们还是需要求逆。 #include<b…

多项式求逆模板(NTT + mod)

【模板】多项式乘法逆 /*Author : lifehappy */ #include <bits/stdc.h>using namespace std;typedef long long ll;const int N 1e6 10, mod 998244353, G 3;int r[N], n;ll a[N], b[N], c[N];ll quick_pow(ll a, int n) {ll ans 1;while(n) {if(n & 1) ans …

2019-02-26-算法-进化(回文数)

题目描述&#xff1a; 判断一个整数是否是回文数。回文数是指正序&#xff08;从左向右&#xff09;和倒序&#xff08;从右向左&#xff09;读都是一样的整数。 示例 1: 输入: 121 输出: true示例 2: 输入: -121 输出: false 解释: 从左向右读, 为 -121 。 从右向左读, 为…

POJ1742 Coins(DP)

Coins 思路 没分析复杂度写了个二进制拆分&#xff0c;然后做010101背包O(nlog(c)m)>10e7了O(nlog(c)m) > 10e7了O(nlog(c)m)>10e7了&#xff0c;所以还是想办法优化吧。 我们引入一个needneedneed数组&#xff0c;need[j]need[j]need[j]表示&#xff0c;在枚举到第…

13张PPT带你了解主动式消息队列处理集群

前言偷偷和你们说&#xff0c;我搞了一份内部资料&#xff0c;该内部资料共有13张PPT&#xff0c;据作者透露&#xff0c;该PPT至少花了整整1周时间才编写完成&#xff0c;其内容简洁明了&#xff0c;内容深度足够&#xff0c;易于初学者理解&#xff0c;也给深度开发人员分享了…

CF773F Test Data Generation(倍增FFT/动态规划)

CF773F Test Data Generation https://www.luogu.com.cn/problem/CF773F 这个题还是挺巧妙的&#xff0c;最后需要我们求解的实际上值域为a选择奇数个数最大数是奇数的方案数&#xff0c;然后这个东西显然包含了3个信息&#xff0c;值域、个数、最后一个数的奇偶性&#xff0c…

2019-02-27-算法-进化(寻找两个有序数组的中位数)

题目描述 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。 请你找出这两个有序数组的中位数&#xff0c;并且要求算法的时间复杂度为 O(log(m n))。 你可以假设 nums1 和 nums2 不会同时为空。 示例 1: nums1 [1, 3] nums2 [2]则中位数是 2.0示例 2: nums1 [1, 2]…

.Net Core 三大Redis客户端对比和使用心得

前言稍微复杂一点的互联网项目&#xff0c;技术选型都可能会涉及Redis&#xff0c;.NetCore的生态越发完善&#xff0c;支持.NetCore的Redis客户端越来越多&#xff0c;下面三款常见的Redis客户端&#xff0c;相信大家平时或多或少用到一些&#xff0c;结合平时对三款客户端的使…

2020第十一届蓝桥杯软件类省赛第二场C/C++ 大学 B 组(题解)

试题 A: 门牌制作 问题描述 小蓝要为一条街的住户制作门牌号。 这条街一共有 2020 位住户&#xff0c;门牌号从 1 到 2020 编号。 小蓝制作门牌的方法是先制作 0 到 9 这几个数字字符&#xff0c;最后根据需要将字 符粘贴到门牌上&#xff0c;例如门牌 1017 需要依次粘贴字符 …

队长开卖自家产“翠香”猕猴桃

猕猴桃品种有很多&#xff0c;但不是所有的果子都叫翠香。这两天我在公众号里卖了这个翠香猕猴桃&#xff0c;可能是有同学以为是做广告卖水果&#xff0c;其实是家里的亲戚猕猴桃成熟了&#xff0c;辛苦一年下来地里一共结了3000斤猕猴桃&#xff0c;遇到了一个难题就是如何把…

Java修炼之路——基础篇——Java集合类

集合类的全景图 常用集合类特性 1. Collection&#xff1a;每个位置对应一个元素1.1: List 存放有序元素&#xff0c;允许重复元素&#xff0c;允许元素为null1.1.1: ArrayList&#xff1a;内部结构为数组&#xff1b;初始容量为10&#xff1b;插入、删除的移动速度慢&#x…

1575 Gcd and Lcm

1575 Gcd and Lcm ∑i1n∑j1i∑k1ilcm(gcd(i,j),gcd(i,k))设f(n)∑i1n∑j1nlcm(gcd(i,n),gcd(j,n))f(p)3p2−3p1f(pk)(2k1)(p2k−p2k−1)pk−1\sum_{i 1} ^{n} \sum_{j 1} ^{i} \sum_{k 1} ^{i} lcm(gcd(i, j), gcd(i, k))\\ 设f(n) \sum_{i 1} ^{n} \sum_{j 1} ^{n} lcm…

UVA12298 Super Poker II(多项式/背包问题)

UVA12298 Super Poker II 这应该是最水的背包问题了吧 然后有一个小问题就是这道题没有给模数&#xff0c;然后答案会爆int&#xff0c;所以我们需要MTT&#xff0c;然后开long long就好了&#xff0c;或者直接fft&#xff0c;有可能会爆精度。

Java修炼之路——基础篇——Java集合类详解1

SynchronizedList和Vector的区别 java.util.Vector java.util.Collections.$SynchronizedList Vector用同步方法&#xff0c;SynchronizedList用同步代码块&#xff0c;SynchronizedList可以指定锁定的对象 SynchronizedList有很好的扩展和兼容功能&#xff0c;能把所有List的子…