AT2675 [AGC018F] Two Trees(欧拉回路)

AT2675 [AGC018F] Two Trees

首先我们看到1或-1,那么就是限制差距在1以内,然后我们可以想到构造一些东西来满足这种东西,然后我们经常利用的就是欧拉回路。
首先这是两个树,然后我们可以根据儿子个数来判断当前点的奇偶性,如果相同编号在两个树上奇偶性不同,那么必然无解,否则我们一定能够构造一组解。具体方法就是让偶点赋值为0,然后考虑两个树上相同编号奇点连边,这时候就满足所有点的度数都是偶数的限制了,但是对于根需要处理一下,建一个虚拟根连接两个树根,那么这样跑出来欧拉回路,根据方向来确定赋值1或-1。
我们发现对于任意一个点的子树总的只会是进一条边或出去一条边,因为从父亲只进来或出去一条边。这样我们就满足了题目要求的限制。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/313990.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

.netcore 分布式事务CAP2.6之控制台使用

上一编.netcore 分布式事务CAP2.6 快速入门 讲了cap2.6的快速入门,这次我们来讲讲在控制台中如何使用cap2.6。因为cap2.6的内存模式目前已经可以使用了,相关组件已经更新,所以这次我们以简单的内存模式为例。1:创建项目创建一个名…

2019-03-18-算法-进化(有效的字母异位词)

给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的一个字母异位词。 示例 1: 输入: s "anagram", t "nagaram" 输出: true示例 2: 输入: s "rat", t "car" 输出: false说明: 你可以假设字符串只包含小写字母…

P6378 [PA2010] Riddle(2-sat/前后缀优化建图)

P6378 [PA2010] Riddle n个点m条边的无向图,分为k个部分,从每个部分选择恰好一个关键点,使得每条边至少有一个端点是关键点。 首先有这么多的限制,实际上就是一个选或者不选的问题,每条边的限制相当于一个不选就必须…

2019-03-18-算法-进化(删除链表的倒数第N个节点)

给定一个链表,删除链表的倒数第 n 个节点,并且返回链表的头结点。 示例: 给定一个链表: 1->2->3->4->5, 和 n 2.当删除了倒数第二个节点后,链表变为 1->2->3->5.说明: 给定的 n 保证是有效的。…

TestinPro应用与DevOps之路

文 | 中国农业银行软件研发中心 系统支持部 王晓昕 程伟静 胡莉莉Testin Pro(云测平台)是一款移动端自动化测试平台工具,帮助用户实现移动端测试自动化,是一套设备统一调配、软硬件一体化的移动端测试方案。Testin Pro具有在线录制…

多项式开根

多项式开根 给定多项式g(x)g(x)g(x),求f(x)f(x)f(x),满足f2(x)g(x)f ^ 2(x) g(x)f2(x)g(x)。 假设我们已经得到了g(x)g(x)g(x),膜x⌈n2⌉x ^{\lceil \frac{n}{2} \rceil}x⌈2n​⌉下的根f0(x)f_0 (x)f0​(x),要求膜xnx ^ nxn下…

通过Service访问应用 (2)

目录 通过NodePort Service在外部访问集群应用 通过LoadBalancer Service在外部访问集群应用 Microsoft SQL Server数据库部署 为了便于理解和学习,请先阅读上一篇《通过Service访问应用 (1)》再继续学习本篇内容。通过NodePort Service在外…

2019-03-18-算法-进化(反转链表)

题目描述 反转一个单链表。 示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL进阶: 你可以迭代或递归地反转链表。你能否用两种方法解决这道题? /*** 思路1:迭代法,直接依次反转链表* 时间复杂度…

分治FFT

分治FFT 考虑计算这么一个式子f(i)∑j1ifi−jg(j)f(i) \sum\limits_{j 1} ^{i} f_{i - j}g(j)f(i)j1∑i​fi−j​g(j),给定g(x)g(x)g(x),求f(x)f(x)f(x),边界条件f(0)1f(0) 1f(0)1。 假设我们已经算出[l,mid][l, mid][l,mid]&#xff0c…

微软商业智能BI知识整合篇-五大工具产品系列文章

在最近2个月时间里,笔者尝试将自身在企业级商业智能BI的知识及经验进行梳理,以文章的方式输送给广大读者们阅读。笔者同样是非科班专业人员,但在过往的摸索过程中,积累的系列知识足够应付一般性地企业级商业智能BI项目需要。相信在…

2019-03-21-算法-进化(合并两个有序链表)

题目描述 将两个有序链表合并为一个新的有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例: 输入:1->2->4, 1->3->4 输出:1->1->2->3->4->4思路1:双指针法 /*** 合并两个有序…

多项式对数函数ln f(x)

多项式对数函数ln⁡f(x)\ln f(x)lnf(x) 如果存在解必然有[x0]f(x)1[ x ^ 0]f(x) 1[x0]f(x)1, 对ln⁡f(x)\ln f(x)lnf(x)求导,有dln⁡f(x)dx≡f′(x)f(x)(modxn)\frac{d \ln f(x)}{dx} \equiv \frac{f(x)}{f(x)} \pmod {x ^ n}dxdlnf(x)​≡f(x)f′(x)…

【A】兼容Core3.0后 Natasha 的隔离域与热编译操作。

文章转载授权级别:A 预计阅读时间:15分钟一、 2.0预览版本增加了哪些功能大部分为底层的升级优化,例如:引擎兼容 Core3.0优化编译流程,增加编译前语法检测及日志,统一采用流加载方式在 Vito 的建议…

2019-03-22-算法-进化(回文链表)

题目描述 请判断一个链表是否为回文链表。 示例 1: 输入: 1->2 输出: false示例 2: 输入: 1->2->2->1 输出: true进阶: 你能否用 O(n) 时间复杂度和 O(1) 空间复杂度解决此题? 解题 思路1:直接利用List的顺序存储性&#x…

多项式牛顿迭代(应用:求逆,开根,对数exp)

多项式牛顿迭代 给定多项式g(x)g(x)g(x),求f(x)f(x)f(x),满足g(f(x))≡0(modxn)g(f(x)) \equiv 0 \pmod {x ^ n}g(f(x))≡0(modxn)。 泰勒展开 对于现有得f(x)f(x)f(x),构造一个多项式g(x)g(x)g(x),使得f(n)(x)g(n)(x)f^{(n)}(…

.NET Core 使用 K8S ConfigMap的正确姿势

背景ASP.NET Core默认的配置文件定义在 appsetings.json和 appsettings.{Environment}.json文件中。这里面有一个问题就是,在使用容器部署时,每次修改配置文件都需要重新构建镜像。当然你也可能会说,我的配置文件很稳定不需要修改&#xff0c…

2019-03-22-算法-进化(环形链表)

题目描述 给定一个链表,判断链表中是否有环。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。 示例 1: 输入&#xf…

ASP.NET Core on K8S深入学习(9)Secret Configmap

本篇已加入《.NET Core on K8S学习实践系列文章索引》,可以点击查看更多容器化技术相关系列文章。01—Secret关于Secret在应用启动过程中需要一些敏感信息,比如数据库用户名、密码,如果直接明文存储在容器镜像中是不安全的,K8S提供…

生成函数简单入门

生成函数 可表示为F(x)∑nankn(x)F(x) \sum\limits_{n} a_n k_n(x)F(x)n∑​an​kn​(x),对于不同类型的生成函数,有不同的核函数kn(x)k_n(x)kn​(x)。 普通生成函数:kn(x)xnk_n(x) x ^ nkn​(x)xn。 指数生成函数:kn(x)xnn!…

.NET Core 学习资料精选:进阶

2019.09月就要正式发布.NET 3.0了,对于前一篇博文《.NET Core 学习资料精选:入门》大家学的可还开心?这是本系列的第二篇文章:进阶篇,喜欢的园友速度学起来啊。对于还在使用传统.NET Framework 框架的园友,…