竞赛项目 深度学习花卉识别 - python 机器视觉 opencv

文章目录

  • 0 前言
  • 1 项目背景
  • 2 花卉识别的基本原理
  • 3 算法实现
    • 3.1 预处理
    • 3.2 特征提取和选择
    • 3.3 分类器设计和决策
    • 3.4 卷积神经网络基本原理
  • 4 算法实现
    • 4.1 花卉图像数据
    • 4.2 模块组成
  • 5 项目执行结果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习花卉识别 - python 机器视觉 opencv

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目背景

在我国有着成千上万种花卉, 但如何能方便快捷的识别辨识出这些花卉的种类成为了植物学领域的重要研究课题。 我国的花卉研究历史悠久,
是世界上研究较早的国家之一。 花卉是我国重要的物产资源, 除美化了环境, 调养身心外, 它还具有药用价值, 并且在医学领域为保障人们的健康起着重要作用。

花卉识别是植物学领域的一个重要课题, 多年来已经形成一定体系化分类系统,但需要植物学家耗费大量的精力人工分析。 这种方法要求我们首先去了解花卉的生长环境,
近而去研究花卉的整体形态特征。 在观察植株形态特征时尤其是重点观察花卉的花蕊特征、 花卉的纹理颜色和形状及其相关信息等。 然后在和现有的样本进行比对,
最终确定花卉的所属类别。

2 花卉识别的基本原理

花卉种类识别功能实现的主要途径是利用计算机对样本进行分类。 通过对样本的精准分类达到得出图像识别结果的目的。 经典的花卉识别设计如下图 所示,
这几个过程相互关联而又有明显区别。

在这里插入图片描述

3 算法实现

3.1 预处理

预处理是对处于最低抽象级别的图像进行操作的通用名称, 输入和输出均为强度图像。 为了使实验结果更精准, 需要对图像数据进行预处理, 比如,
根据需要增强图像质量、 将图像裁剪成大小一致的形状、 避免不必要的失真等等。

3.2 特征提取和选择

要想获取花卉图像中的最具代表性的隐含信息, 就必须对花卉图像数据集进行相应的变换。

特征提取旨在通过从现有特征中创建新特征(然后丢弃原始特征) 来减少数据集中的特征数量。 然后, 这些新的简化功能集应该能够汇总原始功能集中包含的大多数信息。
这样, 可以从原始集合的组合中创建原始特征的摘要版本。 对所获取的信息实现从测量空间到特征空间的转换。

3.3 分类器设计和决策

构建完整系统的适当分类器组件的任务是使用特征提取器提供的特征向量将对象分配给类别。 由于完美的分类性能通常是不可能实现的,
因此一般的任务是确定每种可能类别的概率。 输入数据的特征向量表示所提供的抽象使得能够开发出在尽可能大程度上与领域无关的分类理论。

在这里插入图片描述
在这里插入图片描述

在设计阶段, 决策功能必须重复多次, 直到错误达到特定条件为止。 分类决策是在分类器设计阶段基于预处理、 特征提取与选择及判决函数建立的模型,
对接收到的样本数据进行归类, 然后输出分类结果。

3.4 卷积神经网络基本原理

卷积神经网络是受到生物学启发的深度学习经典的多层前馈神经网络结构。 是一种在图像分类中广泛使用的机器学习算法。

CNN 的灵感来自我们人类实际看到并识别物体的方式。 这是基于一种方法,即我们眼睛中的神经元细胞只接收到整个对象的一小部分,而这些小块(称为接受场)
被组合在一起以形成整个对象。与其他的人工视觉算法不一样的是 CNN 可以处理特定任务的多个阶段的不变特征。
卷积神经网络使用的并不像经典的人工神经网络那样的全连接层, 而是通过采取局部连接和权值共享的方法, 来使训练的参数量减少, 降低模型的训练复杂度。

CNN 在图像分类和其他识别任务方面已经使传统技术的识别效果得到显著的改善。 由于在过去的几年中卷积网络的快速发展, 对象分类和目标检测能力取得喜人的成绩。

典型的 CNN 含有多个卷积层和池化层, 并具有全连接层以产生任务的最终结果。 在图像分类中, 最后一层的每个单元表示分类概率。

在这里插入图片描述

4 算法实现

4.1 花卉图像数据

花卉图像的获取除了通过用拍摄设备手工收集或是通过网络下载已经整理好的现有数据集, 还可以通过网络爬虫技术收集整理自己的数据集。

在这里插入图片描述

以roses种类的训练数据为例,文件夹内部均为该种类花的图像文件

在这里插入图片描述

4.2 模块组成

示例代码主要由四个模块组成:

  • input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List
  • model.py——模型模块,构建完整的CNN模型
  • train.py——训练模块,训练模型,并保存训练模型结果
  • test.py——测试模块,测试模型对图片识别的准确度

项目模块执行顺序

运行train.py开始训练。
训练完成后- 运行test.py,查看实际测试结果
input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List

import os
import math
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt# -----------------生成图片路径和标签的List------------------------------------
train_dir = 'D:/ML/flower/input_data'roses = []
label_roses = []
tulips = []
label_tulips = []
dandelion = []
label_dandelion = []
sunflowers = []
label_sunflowers = []

定义函数get_files,获取图片列表及标签列表

# step1:获取所有的图片路径名,存放到# 对应的列表中,同时贴上标签,存放到label列表中。def get_files(file_dir, ratio):for file in os.listdir(file_dir + '/roses'):roses.append(file_dir + '/roses' + '/' + file)label_roses.append(0)for file in os.listdir(file_dir + '/tulips'):tulips.append(file_dir + '/tulips' + '/' + file)label_tulips.append(1)for file in os.listdir(file_dir + '/dandelion'):dandelion.append(file_dir + '/dandelion' + '/' + file)label_dandelion.append(2)for file in os.listdir(file_dir + '/sunflowers'):sunflowers.append(file_dir + '/sunflowers' + '/' + file)label_sunflowers.append(3)# step2:对生成的图片路径和标签List做打乱处理image_list = np.hstack((roses, tulips, dandelion, sunflowers))label_list = np.hstack((label_roses, label_tulips, label_dandelion, label_sunflowers))# 利用shuffle打乱顺序temp = np.array([image_list, label_list])temp = temp.transpose()np.random.shuffle(temp)# 将所有的img和lab转换成listall_image_list = list(temp[:, 0])all_label_list = list(temp[:, 1])# 将所得List分为两部分,一部分用来训练tra,一部分用来测试val# ratio是测试集的比例n_sample = len(all_label_list)n_val = int(math.ceil(n_sample * ratio))  # 测试样本数n_train = n_sample - n_val  # 训练样本数tra_images = all_image_list[0:n_train]tra_labels = all_label_list[0:n_train]tra_labels = [int(float(i)) for i in tra_labels]val_images = all_image_list[n_train:-1]val_labels = all_label_list[n_train:-1]val_labels = [int(float(i)) for i in val_labels]return tra_images, tra_labels, val_images, val_labels**定义函数get_batch,生成训练批次数据**# --------------------生成Batch----------------------------------------------# step1:将上面生成的List传入get_batch() ,转换类型,产生一个输入队列queue,因为img和lab# 是分开的,所以使用tf.train.slice_input_producer(),然后用tf.read_file()从队列中读取图像#   image_W, image_H, :设置好固定的图像高度和宽度#   设置batch_size:每个batch要放多少张图片#   capacity:一个队列最大多少定义函数get_batch,生成训练批次数据def get_batch(image, label, image_W, image_H, batch_size, capacity):# 转换类型image = tf.cast(image, tf.string)label = tf.cast(label, tf.int32)# make an input queueinput_queue = tf.train.slice_input_producer([image, label])label = input_queue[1]image_contents = tf.read_file(input_queue[0])  # read img from a queue# step2:将图像解码,不同类型的图像不能混在一起,要么只用jpeg,要么只用png等。image = tf.image.decode_jpeg(image_contents, channels=3)# step3:数据预处理,对图像进行旋转、缩放、裁剪、归一化等操作,让计算出的模型更健壮。image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)image = tf.image.per_image_standardization(image)# step4:生成batch# image_batch: 4D tensor [batch_size, width, height, 3],dtype=tf.float32# label_batch: 1D tensor [batch_size], dtype=tf.int32image_batch, label_batch = tf.train.batch([image, label],batch_size=batch_size,num_threads=32,capacity=capacity)# 重新排列label,行数为[batch_size]label_batch = tf.reshape(label_batch, [batch_size])image_batch = tf.cast(image_batch, tf.float32)return image_batch, label_batch**model.py——CN模型构建**import tensorflow as tf#定义函数infence,定义CNN网络结构#卷积神经网络,卷积加池化*2,全连接*2,softmax分类#卷积层1def inference(images, batch_size, n_classes):with tf.variable_scope('conv1') as scope:weights = tf.Variable(tf.truncated_normal(shape=[3,3,3,64],stddev=1.0,dtype=tf.float32),name = 'weights',dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[64]),name='biases', dtype=tf.float32)conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')pre_activation = tf.nn.bias_add(conv, biases)conv1 = tf.nn.relu(pre_activation, name=scope.name)# 池化层1# 3x3最大池化,步长strides为2,池化后执行lrn()操作,局部响应归一化,对训练有利。with tf.variable_scope('pooling1_lrn') as scope:pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')# 卷积层2# 16个3x3的卷积核(16通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()with tf.variable_scope('conv2') as scope:weights = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 16], stddev=0.1, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[16]),name='biases', dtype=tf.float32)conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')pre_activation = tf.nn.bias_add(conv, biases)conv2 = tf.nn.relu(pre_activation, name='conv2')# 池化层2# 3x3最大池化,步长strides为2,池化后执行lrn()操作,# pool2 and norm2with tf.variable_scope('pooling2_lrn') as scope:norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')# 全连接层3# 128个神经元,将之前pool层的输出reshape成一行,激活函数relu()with tf.variable_scope('local3') as scope:reshape = tf.reshape(pool2, shape=[batch_size, -1])dim = reshape.get_shape()[1].valueweights = tf.Variable(tf.truncated_normal(shape=[dim, 128], stddev=0.005, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),name='biases', dtype=tf.float32)local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)# 全连接层4# 128个神经元,激活函数relu()with tf.variable_scope('local4') as scope:weights = tf.Variable(tf.truncated_normal(shape=[128, 128], stddev=0.005, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),name='biases', dtype=tf.float32)local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')# dropout层#    with tf.variable_scope('dropout') as scope:#        drop_out = tf.nn.dropout(local4, 0.8)# Softmax回归层# 将前面的FC层输出,做一个线性回归,计算出每一类的得分with tf.variable_scope('softmax_linear') as scope:weights = tf.Variable(tf.truncated_normal(shape=[128, n_classes], stddev=0.005, dtype=tf.float32),name='softmax_linear', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[n_classes]),name='biases', dtype=tf.float32)softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')return softmax_linear# -----------------------------------------------------------------------------# loss计算# 传入参数:logits,网络计算输出值。labels,真实值,在这里是0或者1# 返回参数:loss,损失值def losses(logits, labels):with tf.variable_scope('loss') as scope:cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,name='xentropy_per_example')loss = tf.reduce_mean(cross_entropy, name='loss')tf.summary.scalar(scope.name + '/loss', loss)return loss# --------------------------------------------------------------------------# loss损失值优化# 输入参数:loss。learning_rate,学习速率。# 返回参数:train_op,训练op,这个参数要输入sess.run中让模型去训练。def trainning(loss, learning_rate):with tf.name_scope('optimizer'):optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)global_step = tf.Variable(0, name='global_step', trainable=False)train_op = optimizer.minimize(loss, global_step=global_step)return train_op# -----------------------------------------------------------------------# 评价/准确率计算# 输入参数:logits,网络计算值。labels,标签,也就是真实值,在这里是0或者1。# 返回参数:accuracy,当前step的平均准确率,也就是在这些batch中多少张图片被正确分类了。def evaluation(logits, labels):with tf.variable_scope('accuracy') as scope:correct = tf.nn.in_top_k(logits, labels, 1)correct = tf.cast(correct, tf.float16)accuracy = tf.reduce_mean(correct)tf.summary.scalar(scope.name + '/accuracy', accuracy)return accuracy**train.py——利用D:/ML/flower/input_data/路径下的训练数据,对CNN模型进行训练**import input_dataimport model# 变量声明N_CLASSES = 4  # 四种花类型IMG_W = 64  # resize图像,太大的话训练时间久IMG_H = 64BATCH_SIZE = 20CAPACITY = 200MAX_STEP = 2000  # 一般大于10Klearning_rate = 0.0001  # 一般小于0.0001# 获取批次batchtrain_dir = 'F:/input_data'  # 训练样本的读入路径logs_train_dir = 'F:/save'  # logs存储路径# train, train_label = input_data.get_files(train_dir)train, train_label, val, val_label = input_data.get_files(train_dir, 0.3)# 训练数据及标签train_batch, train_label_batch = input_data.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)# 测试数据及标签val_batch, val_label_batch = input_data.get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)# 训练操作定义train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)train_loss = model.losses(train_logits, train_label_batch)train_op = model.trainning(train_loss, learning_rate)train_acc = model.evaluation(train_logits, train_label_batch)# 测试操作定义test_logits = model.inference(val_batch, BATCH_SIZE, N_CLASSES)test_loss = model.losses(test_logits, val_label_batch)test_acc = model.evaluation(test_logits, val_label_batch)# 这个是log汇总记录summary_op = tf.summary.merge_all()# 产生一个会话sess = tf.Session()# 产生一个writer来写log文件train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)# val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph)# 产生一个saver来存储训练好的模型saver = tf.train.Saver()# 所有节点初始化sess.run(tf.global_variables_initializer())# 队列监控coord = tf.train.Coordinator()threads = tf.train.start_queue_runners(sess=sess, coord=coord)# 进行batch的训练try:# 执行MAX_STEP步的训练,一步一个batchfor step in np.arange(MAX_STEP):if coord.should_stop():break_, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])# 每隔50步打印一次当前的loss以及acc,同时记录log,写入writerif step % 10 == 0:print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))summary_str = sess.run(summary_op)train_writer.add_summary(summary_str, step)# 每隔100步,保存一次训练好的模型if (step + 1) == MAX_STEP:checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')saver.save(sess, checkpoint_path, global_step=step)except tf.errors.OutOfRangeError:print('Done training -- epoch limit reached')finally:coord.request_stop()**test.py——利用D:/ML/flower/flower_photos/roses路径下的测试数据,查看识别效果**import matplotlib.pyplot as pltimport modelfrom input_data import get_files# 获取一张图片def get_one_image(train):# 输入参数:train,训练图片的路径# 返回参数:image,从训练图片中随机抽取一张图片n = len(train)ind = np.random.randint(0, n)img_dir = train[ind]  # 随机选择测试的图片img = Image.open(img_dir)plt.imshow(img)plt.show()image = np.array(img)return image# 测试图片def evaluate_one_image(image_array):with tf.Graph().as_default():BATCH_SIZE = 1N_CLASSES = 4image = tf.cast(image_array, tf.float32)image = tf.image.per_image_standardization(image)image = tf.reshape(image, [1, 64, 64, 3])logit = model.inference(image, BATCH_SIZE, N_CLASSES)logit = tf.nn.softmax(logit)x = tf.placeholder(tf.float32, shape=[64, 64, 3])# you need to change the directories to yours.logs_train_dir = 'F:/save/'saver = tf.train.Saver()with tf.Session() as sess:print("Reading checkpoints...")ckpt = tf.train.get_checkpoint_state(logs_train_dir)if ckpt and ckpt.model_checkpoint_path:global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]saver.restore(sess, ckpt.model_checkpoint_path)print('Loading success, global_step is %s' % global_step)else:print('No checkpoint file found')prediction = sess.run(logit, feed_dict={x: image_array})max_index = np.argmax(prediction)if max_index == 0:result = ('这是玫瑰花的可能性为: %.6f' % prediction[:, 0])elif max_index == 1:result = ('这是郁金香的可能性为: %.6f' % prediction[:, 1])elif max_index == 2:result = ('这是蒲公英的可能性为: %.6f' % prediction[:, 2])else:result = ('这是这是向日葵的可能性为: %.6f' % prediction[:, 3])return result# ------------------------------------------------------------------------if __name__ == '__main__':img = Image.open('F:/input_data/dandelion/1451samples2.jpg')plt.imshow(img)plt.show()imag = img.resize([64, 64])image = np.array(imag)print(evaluate_one_image(image))

5 项目执行结果

执行train模块,结果如下:
在这里插入图片描述
同时,训练结束后,在电脑指定的训练模型存储路径可看到保存的训练好的模型数据。
在这里插入图片描述

执行test模块,结果如下:

在这里插入图片描述
关闭显示的测试图片后,console查看测试结果如下:
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/31035.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】网络编程套接字

文章目录 网络编程套接字1. 认识TCP协议2. 认识UDP协议3. 网络字节序4. socket编程接口4.1 sockaddr 结构 5. 简单的UDP网络程序6. 简单的TCP网络程序6.1 TCP socket的封装6.2 TCP协议通讯流程 网络编程套接字 1. 认识TCP协议 传输层协议有连接可靠传输面向字节流 2. 认识UD…

php通过各种函数判断0和空php实例

php通过各种函数判断0和空php实例 本文给大家介绍php同各种函数判断0和空的方法,在文章给大家补充介绍了php 语法里0不等于null为空的解决办法 补充:下面给大家介绍下php 语法里0不等于null为空的解决办法 今天遇到这样一个问题是这样的: php 语句里,我…

Blender如何给fbx模型添加材质贴图并导出带有材质贴图的模型

推荐:使用 NSDT场景编辑器快速助你搭建可二次编辑的3D应用场景 此教程适合新手用户,专业人士直接可直接绕路。 本教程中介绍了利用Blender建模软件,只需要简单几步就可以为模型添加材质贴,图,并且导出带有材质的模型文…

uniapp 使用canvas画海报(微信小程序)

效果展示&#xff1a; 项目要求&#xff1a;点击分享绘制海报&#xff0c;并实现分享到好友&#xff0c;朋友圈&#xff0c;并保存 先实现绘制海报 <view class"data_item" v-for"(item,index) in dataList" :key"index"click"goDet…

【OpenVINOSharp】 基于C#和OpenVINO2023.0部署Yolov8全系列模型

基于C#和OpenVINO2023.0部署Yolov8全系列模型 1 项目简介1.1 OpenVINOTM 2 OpenVinoSharp2.1 OpenVINOTM 2023.0安装配置2.2 C 动态链接库2.3 C#构建Core推理类2.4 NuGet安装OpenVinoSharp 3 获取和转换Yolov8模型3.1 安装ultralytics3.2 导出yolov8模型3.3 安装OpenVINOTM Pyt…

ssm学院党员管理系统源码和论文PPT

ssm学院党员管理系统源码和论文PPT002 开发工具&#xff1a;idea 数据库mysql5.7(mysql5.7最佳) 数据库链接工具&#xff1a;navcat,小海豚等 开发技术&#xff1a;java ssm tomcat8.5 选题意义、价值和目标&#xff1a; 随着鄂尔多斯应用技术学院招生规模的不断扩大&…

LeetCode209. 长度最小的子数组

题目&#xff1a;LeetCode209. 长度最小的子数组 描述&#xff1a; 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl1, …, numsr-1, numsr] &#xff0c;并返回其长度。如果不存在符合条件的子…

改进DevSecOps框架的 5 大关键技术

Markets and Markets的一项研究显示&#xff0c;全球DevOps的市场规模从2017年的29亿美元增加到2023年的103.1亿美元&#xff0c;预测期的年复合增长率(CAGR)为24.7%。人们对DevOps越来越感兴趣&#xff0c;因为DevOps不仅能够压缩软件的交付周期&#xff0c;还能提高交付的速度…

geeemap学习总结(1)——Anaconda-VSCode-geemap环境安装与配置

配置conda geemap 环境 通过Anaconda配置geemap环境较为方便&#xff0c;首先需在系统中完成 Anaconda安装。创建名为geemap的环境conda create -n geemap切换到新建的环境conda activate geemap安装geemap依赖包conda install -c conda-forge geemap 安装mambaconda install …

ACM算法竞赛中在编辑器中使用输入输出样例-CPH

通用方法 我们可以在编辑器中创建三个文件&#xff0c;一个是main.cpp,一个是test.in,一个是test.out分别用来写代码&#xff0c;输入输入数据&#xff0c;显示输出数据 这种方法的好处是不需要插件&#xff0c;在任何编辑器中都可以实现&#xff0c;例如Devc,sublime,vscode…

【Pyhthon实战】Python对全校电费查询采集并可视化分析

前言 今天,我来说说怎么抓取宿舍电费的过程。我们学校是在完美校园交电费的,我们可以不用取抓包完美校园的数据接口,我们可以直接登录学校的一卡通网站,每个学校都有,大家可以自己找找,这里我为什么要抓包呢,因为学校提供的网站已经打不开了,这里就不介绍怎么抓包了。 …

直播电商赋能跨境业务,Live Market创造全民参与的生态圈

全球疫情的影响让跨境电商业务受到了巨大的冲击&#xff0c;但同时也为跨境电商业务带来了新的机遇和挑战。直播电商作为电子商务行业的新兴业务版块&#xff0c;成为了跨境电商业务的一个重要推动力量。在这个背景下&#xff0c;直播电商成为了跨境电商业务的一个主流业务版块…

php-cgi.exe - FastCGI 进程超过了配置的请求超时时限

解决方案一&#xff1a; 处理(php-cgi.exe - FastCGI 进程超过了配置的请求超时时限)的问题 内容转载&#xff1a; 处理(php-cgi.exe - FastCGI 进程超过了配置的请求超时时限)的问题_php技巧_脚本之家 【详细错误】&#xff1a; HTTP 错误 500.0 - Internal Server Error C:…

python爬虫之scrapy框架介绍

一、Scrapy框架简介 Scrapy 是一个开源的 Python 库和框架&#xff0c;用于从网站上提取数据。它为自从网站爬取数据而设计&#xff0c;也可以用于数据挖掘和信息处理。Scrapy 可以从互联网上自动爬取数据&#xff0c;并将其存储在本地或在 Internet 上进行处理。Scrapy 的目标…

vue3中用watch监听响应式数据的注意点

如果你在vue3中使用reactive()方法创建响应式数据&#xff0c;然后又用torefs()方法将响应式数据解构成单一的ref响应式数据。 此时&#xff0c;如果你想用watch监听解构出来单一的响应式数据&#xff0c;watch不起作用。 此时&#xff0c;你需要用watch监听之前的reactive()…

Python如何打开pkl的sample text?(上篇)

点击上方“Python爬虫与数据挖掘”&#xff0c;进行关注 回复“书籍”即可获赠Python从入门到进阶共10本电子书 今 日 鸡 汤 昨夜闲潭梦落花&#xff0c;可怜春半不还家。 大家好&#xff0c;我是皮皮。 一、前言 前几天在Python私教群【Emma】问了一个Python读取数据的问题&am…

mysql_docker主从复制_实战_binlog混合模式_天座著

步骤1&#xff1a;拉取镜像 docker pull mariadb:latest 步骤2.1&#xff1a;创建两个文件夹用于放置挂载mysql的my.cnf /tianzuomysqlconf/master /tianzuomysqlconf/slave mkdir /tianzuomysqlconf cd /tianzuomysqlconf mkdir master mkdir slave 步骤2.2&#xff1a;创…

ElasticSearch:全文检索及倒排索引原理

1.从全文检索说起 首先介绍一下结构化与非结构化数据&#xff1a; 结构化数据将数据具有的特征事先以结构化的形式定义好&#xff0c;数据有固定的格式或有限的长度。典型的结构化数据就是传统关系型数据库的表结构&#xff0c;数据特征直接体现在表结构的字段上&#xff0c;…

idea数据库快速上手-库操作与表结构和数据操作

引言 对数据库的操作无非就是执行SQL语句&#xff0c;要想熟练操作数据库&#xff0c;就要熟练运用SQL语句。 一&#xff0c;数据库操作 展示当前服务器内的数据库 -- 展示服务器内的数据库 show databases; show schemas; 执行结果&#xff1a; 创建数据库&#xff1a; --…

云技术-混沌工程

目录 混沌工程 故障注入 监控和观测 自动化和持续集成 混沌工程 混沌工程&#xff08;Chaos Engineering&#xff09;是一种实验性的系统可靠性工程方法&#xff0c;主动引入故障和异常来测试系统的弹性和容错能力。混沌工程的核心思想是通过模拟故障场景来验证系统在各种异…