Python-OpenCV中的图像处理-图像梯度

Python-OpenCV中的图像处理-图像梯度

  • 图像梯度
    • Sobel 算子和 Scharr 算子
    • Laplacian 算子

图像梯度

  • 图像梯度,图像边界等
  • 使用到的函数有: cv2.Sobel(), cv2.Scharr(), cv2.Laplacian() 等
  • 原理:梯度简单来说就是求导。OpenCV 提供了三种不同的梯度滤波器,或者说高通滤波器: Sobel,Scharr 和 Laplacian。Sobel, Scharr 其实就是求一阶或二阶导数。 Scharr 是对 Sobel(使用小的卷积核求解求解梯度角度时)的优化。 Laplacian 是求二阶导数。

Sobel 算子和 Scharr 算子

Sobel 算子是高斯平滑与微分操作的结合体,所以它的抗噪声能力很好。你可以设定求导的方向( xorder 或 yorder)。还可以设定使用的卷积核的大小( ksize)。如果 ksize=-1,会使用 3x3 的 Scharr 滤波器,它的的效果要比 3x3 的 Sobel 滤波器好(而且速度相同,所以在使用 3x3 滤波器时应该尽量使用 Scharr 滤波器)。 3x3 的 Scharr 滤波器卷积核如下:
X 方向 = [ − 3 0 3 − 10 0 10 − 3 0 3 ] , Y 方向 = [ − 3 − 10 − 3 0 0 0 3 10 3 ] X方向=\left[ \begin{matrix} -3&0&3\\-10&0&10\\-3&0&3 \end{matrix}\right],Y方向=\left[ \begin{matrix} -3&-10&-3\\0&0&0\\3&10&3\end{matrix}\right] X方向= 31030003103 ,Y方向= 30310010303

Laplacian 算子

拉普拉斯算子可以使用二阶导数的形式定义,可假设其离散实现类似于二阶 Sobel 导数,事实上, OpenCV 在计算拉普拉斯算子时直接调用 Sobel 算子。
拉普拉斯滤波器使用的卷积核:
k e r n e l = [ 0 1 0 1 − 4 1 0 1 0 ] kernel=\left[ \begin{matrix} 0&1&0\\1&-4&1\\0&1&0\end{matrix}\right] kernel= 010141010

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/sudoku.png', cv2.IMREAD_GRAYSCALE)# 拉普拉斯 cv2.CV_64F 输出图像的深度(数据类型),可以使用-1, 与原图像保持一致 np.uint8
laplacian = cv2.Laplacian(img, cv2.CV_64F, ksize=3)
laplacian = cv2.convertScaleAbs(laplacian)  # 索贝尔 X方向, 参数 1,0 为只在 x 方向求一阶导数,最大可以求 2 阶导数
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5)
sobelx = cv2.convertScaleAbs(sobelx)# 索贝尔 Y方向, 参数 0,1 为只在 y 方向求一阶导数,最大可以求 2 阶导数
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=5) 
sobely = cv2.convertScaleAbs(sobely)# Scharr X方向,
scharrx = cv2.Scharr(img, cv2.CV_64F, 1, 0)
scharrx = cv2.convertScaleAbs(scharrx)# Scharr Y方向,
scharry = cv2.Scharr(img, cv2.CV_64F, 0, 1)
scharry = cv2.convertScaleAbs(scharry)plt.subplot(321), plt.imshow(img, cmap='gray'), plt.title('Origin'), plt.xticks([]), plt.yticks([])
plt.subplot(322), plt.imshow(laplacian, cmap='gray'), plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(323), plt.imshow(sobelx, cmap='gray'), plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(324), plt.imshow(sobely, cmap='gray'), plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.subplot(325), plt.imshow(scharrx, cmap='gray'), plt.title('Scharr X'), plt.xticks([]), plt.yticks([])
plt.subplot(326), plt.imshow(scharry, cmap='gray'), plt.title('Scharr Y'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/box2.png')# output dtype = cv2.CV_8U
sobelx8u = cv2.Sobel(img, cv2.CV_8U, 1,0, ksize=5)# 也可以将参数设置为-1
sobelx8u_n = cv2.Sobel(img, -1, 1, 0, ksize=5)# output dtype = cv2.CV64F,
sobelx64f = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5)
abs_sobel64f = np.absolute(sobelx64f)
sobel_8u = np.uint8(abs_sobel64f)# Scharr X方向
scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)# Scharr Y方向
scharry = cv2.Scharr(img,cv2.CV_64F,0,1)plt.subplot(2,3,1), plt.imshow(img, cmap='gray'), plt.title('original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,3,2), plt.imshow(sobelx8u, cmap='gray'), plt.title('Sobel CV_8U'), plt.xticks([]), plt.yticks([])
plt.subplot(2,3,3), plt.imshow(sobel_8u, cmap='gray'), plt.title('Sobel abs(CV_64F)'), plt.xticks([]), plt.yticks([])
plt.subplot(2,3,4), plt.imshow(scharrx, cmap='gray'), plt.title('Scharr X'), plt.xticks([]), plt.yticks([])
plt.subplot(2,3,5), plt.imshow(scharry, cmap='gray'), plt.title('Scharr Y'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/30194.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

fastadmin、vue、react图标库适用于多种框架

在二开fastadmin中,在写vue以及react时,侧边导航栏以及按钮中常常需要很多图标,那么这些图标应该去哪里得到呢,在这里给大家一个链接,这里有丰富的图标库,可以找到自己想要的进行使用。 点击下方链接&…

github pages 用法详解 发布自己的网站

github pages 基础用法 URL 规则 假设你的 github 帐号为 mygithub,需要发布的仓库名为 myrepo,那么 pages 的 URL 为: https://mygithub.github.io/myrepo 添加内容 用任意编辑器写好(或者生成)标准的网页内容&a…

苹果正在测试新款Mac mini:搭载M3芯片 配备24GB大内存

据悉苹果目前正在测试新的Mac机型,亮点是采用最新的M3芯片。 据报道,首款搭载M3芯片的设备应该是13英寸的MacBook Pro和重新设计的MacBook Air,Mac mini机型并不在名单上。 M3和M2同样拥有最多8个核心,分别为4个性能核和4个能效核…

OpenAI-Translator 实战总结

最近在极客时间学习《AI 大模型应用开发实战营》,自己一边跟着学一边开发了一个进阶版本的 OpenAI-Translator,在这里简单记录下开发过程和心得体会,供有兴趣的同学参考 功能概览 通过openai的chat API,实现一个pdf翻译器实现一个…

Python爬虫——selenium的安装和基本使用

1.什么是selenium? selenium是一个用于web应用程序测试的工具selenium测试直接运行在浏览器中,就像真正的用户在操作一样支持通过各种driver(FrifoxDriver,ItenrentExploreDriver,OperaDriver,ChromeDrive…

【BASH】回顾与知识点梳理(十四)

【BASH】回顾与知识点梳理 十四 十四. 文件与目录的默认权限与隐藏权限14.1 文件预设权限:umaskumask 的利用与重要性:专题制作 14.2 文件隐藏属性chattr (配置文件案隐藏属性)lsattr (显示文件隐藏属性) 14.3 文件特殊权限: SUID, SGID, SBI…

了解华为(H3C)网络设备和OSI模型基本概念

目录 一,认识华为 1.华为发展史 2.华为网络设备介绍 3.VRP概述 二,OSI七层模型 1.七层模型详细表格 2.各层的作用 3.数据在各层之间的传递过程 4.OSI四层网络模型 一,认识华为 官网:https://www.huawei.com/cn/ 1.华为发…

从‘深林’到潮鞋App:得物如何改变电商格局”

在App Store上搜索下载得物App,惊奇发现其下载量达到百万级别,媲美同期京东App的下载量。 这是一个不小的数据体量,对此我产生了极大的好奇:“在淘宝系、京东、唯品会等电商巨头林立的现状下,单依靠潮鞋的得物凭什么能…

详解配置交换机多生成树MSTP+VRRP 的典型组网

详解配置交换机多生成树MSTPVRRP 的典型组网 组网: 1. 这是一个由三台交换机组成的倒三角型二层交换网络;网络中有4个VLAN:10、20、30、40;接口编号如图所示;SW3为接入层交换机,SW1、SW2为汇聚层交换机&am…

bash: make: command not found

make之后报错信息如下:cd 对应的文件路径后 make 发现报错:bash: make: command not found 这个原因可能是没有安装make工具,也可能是安装了make之后,没有将make的文件路径添加到系统环境变量中 有没有安装make,可以使用Search Everything搜索是否有make…

websocket+node实现直播(弱鸡版)

心血历程 这部分主要是写在写这些的时候遇到的问题以及换思路的过程,可以之间看正文 在之前我也写过直播功能,并且与websocket相结合实现了直播弹幕。只不过直播是使用的腾讯云的,而不是手写的直播推流拉流,这次又有一个新的项目…

【D3S】集成smart-doc并同步配置到Torna

目录 一、引言二、maven插件三、smart-doc.json配置四、smart-doc-maven-plugin相关命令五、推送文档到Torna六、通过Maven Profile简化构建 一、引言 D3S(DDD with SpringBoot)为本作者使用DDD过程中开发的框架,目前已可公开查看源码&#…

自从学了C++之后,小雅兰就有对象了!!!(类与对象)(中)——“C++”

各位CSDN的uu们好呀,好久没有更新小雅兰的C专栏啦,话不多说,让我们进入类和对象的世界吧!!! 类的6个默认成员函数 构造函数 析构函数 拷贝构造函数 类的6个默认成员函数 如果一个类中什么成员都没有&am…

el-select与el-tree结合使用,实现select框下拉使用树形结构选择数据

使用el-select与el-tree&#xff0c;实现如下效果&#xff0c; 代码如下&#xff1a; 注意点&#xff1a;搜索input框的代码一点放在option上面&#xff0c;不要放在option里面&#xff0c;否则一点击搜索框&#xff0c;下拉框就会收起来&#xff0c;不能使用。 <el-select…

【深度学习注意力机制系列】—— SKNet注意力机制(附pytorch实现)

SKNet&#xff08;Selective Kernel Network&#xff09;是一种用于图像分类和目标检测任务的深度神经网络架构&#xff0c;其核心创新是引入了选择性的多尺度卷积核&#xff08;Selective Kernel&#xff09;以及一种新颖的注意力机制&#xff0c;从而在不增加网络复杂性的情况…

工业无线技术应用-无线控制斗轮机启停、故障等开关信号

斗轮堆取料机是一种对散料进行连续堆取作业的高效装卸大型机械,被广泛使用于火力发电厂和炼焦厂的输煤系统中。目前对斗轮机的技改主要为将斗轮机的部分程控信号改为无线传输&#xff0c;取代卷筒电机和电缆的应用。 多数情况下都是利用无线通讯做媒介&#xff0c;让工作人员通…

第48节:cesium 面交集计算(含源码+视频)

结果示例: 完整源码: <template><div class="viewer"><vc-viewer @ready="ready" :logo="false"><vc-navigation

docker版jxTMS使用指南:使用jxTMS采集数据之一

本文讲解了如何jxTMS的数据采集与处理框架并介绍了如何用来采集数据&#xff0c;整个系列的文章请查看&#xff1a;docker版jxTMS使用指南&#xff1a;4.4版升级内容 docker版本的使用&#xff0c;请查看&#xff1a;docker版jxTMS使用指南 4.0版jxTMS的说明&#xff0c;请查…

Unity之ShaderGraph 节点介绍 Utility节点

Utility 逻辑All&#xff08;所有分量都不为零&#xff0c;返回 true&#xff09;Any&#xff08;任何分量不为零&#xff0c;返回 true&#xff09;And&#xff08;A 和 B 均为 true&#xff09;Branch&#xff08;动态分支&#xff09;Comparison&#xff08;两个输入值 A 和…

15 款最佳建筑渲染软件,适用于 Windows、macOS,免费和付费版本

3D 建模和渲染在建筑行业的各种项目的推广和营销中发挥着非常重要的作用。建筑公司使用 3D 建模和渲染、3D 建筑动画和演练来展示他们的设计。房地产效果图帮助代理商让客户清楚地了解建筑设计、纹理、灯光效果和环境情况。这是非常有价值的&#xff0c;并且在销售设计时提供了…