Netty面试题1

计算机网络模型

OSI采用了分层的结构化技术,共分七层, 物理层、数据链路层、网络层、传输层、会话层、表示层、应用层

Open System
Interconnect 简称OSI,是国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)联合制定的开放系统互连参考模型,为开放式互连信息系统提供了一种功能结构的框架。

OSI模型比较复杂且学术化,所以我们实际使用的TCP/IP模型,共分4层, 链路层、网络层、传输层、应用层

两个模型之间的对应关系如图所示:

  1. 物理层:物理层是OSI模型的第一层,它定义了在网络上传输比特流的方式。物理层的主要任务是将数字数据转换为模拟信号,以便在网络上进行传输。
  2. 数据链路层:数据链路层是OSI模型的第二层,它定义了如何在网络上传输数据包。数据链路层的主要任务是将数据分成帧(Frame),并在物理层上传输。
  3. 网络层:网络层是OSI模型的第三层,它定义了如何在不同的网络之间传输数据。网络层的主要任务是路由(Routing),即确定最佳的路径将数据从源节点传输到目标节点。
  4. 传输层:传输层是OSI模型的第四层,它定义了数据传输的端到端可靠性和流量控制。传输层的主要任务是将数据分成数据段(Segment),并在网络上进行传输。
  5. 会话层:会话层是OSI模型的第五层,它定义了如何在通信双方之间建立、管理和终止会话(Session)。会话层的主要任务是管理会话层协议(例如,连接建立和断开、同步和恢复等)。
  6. 表示层:表示层是OSI模型的第六层,它定义了如何将数据表示为应用程序可以处理的格式。表示层的主要任务是将数据进行编码、解码和加密。
  7. 应用层:应用层是OSI模型的第七层,它定义了不同应用程序之间的交互方式。应用层的主要任务是提供各种服务,例如文件传输、电子邮件和远程登录等。

各协议的解释

  1. TCP:传输控制协议(TCP)是一种面向连接的协议,它在发送数据之前先建立一个连接。TCP确保数据在网络上正确地传输,确保数据的可靠性和完整性,它还能够控制数据的流量和拥塞。TCP是应用广泛的协议之一,用于电子邮件、网页浏览和文件传输等应用中。
  2. UDP:用户数据报协议(UDP)是一种无连接的协议,它不需要在发送数据之前建立连接。UDP不保证数据的可靠性或完整性,但它更快速、更简单,适用于对数据传输延迟较为敏感的应用程序。UDP常用于音视频传输、在线游戏等实时性较高的应用中。

总的来说,TCP适用于那些需要确保数据可靠性和完整性的应用,而UDP适用于那些需要快速数据传输和实时性的应用。

  1. IP:Internet Protocol (IP)是一种协议,用于在计算机网络上传输数据包。它是一种无连接协议,意味着在发送数据之前不会建立连接。IP协议负责数据的传输和路由,以确保数据正确地从源主机传输到目标主机。
  2. ICMP:Internet控制消息协议(ICMP)是一种协议,用于在IP网络上传输控制消息。它通常用于诊断网络问题,如测试主机是否可达、测量网络延迟和带宽等。
  3. RIP:路由信息协议(RIP)是一种用于动态路由的协议。它通过广播路由信息来使网络中的路由器了解网络拓扑结构,并计算出最佳路由。RIP通常用于小型网络。
  4. OSPF:开放最短路径优先(OSPF)是一种基于链路状态的路由协议,用于大型企业网络中的动态路由。它使用Dijkstra算法来计算最短路径,并通过交换链路状态信息来建立拓扑图。
  5. BGP:边界网关协议(BGP)是一种用于互联网中的路由协议。它是一种路径向量协议,用于在AS之间选择最佳路径。BGP的主要作用是确保互联网上的路由器能够相互通信,并在网络出现问题时快速恢复。
  6. IGMP:Internet组管理协议(IGMP)是一种协议,用于在多播网络中管理组成员。它允许主机加入或离开多播组,并在网络中通知路由器有多少主机加入或离开多播组。
  7. SLIP:串行线路互联协议(SLIP)是一种早期的协议,用于在串行线路上传输IP数据包。它已被PPP所取代,因为SLIP具有固定的IP地址、缺乏安全性和完整性检查等问题。
  8. CSLIP:压缩串行线路互联协议(CSLIP)是一种改进的SLIP协议,它使用压缩技术减少了IP数据包在串行线路上的传输负载,提高了传输速度。
  9. PPP:点对点协议(PPP)是一种面向连接的协议,用于在两个计算机之间传输数据。它支持多种协议,如IP、IPX、NetBIOS等,并提供身份验证、加密和压缩等功能。
  10. ARP:地址解析协议(ARP)是一种协议,用于将IP地址映射到MAC地址。ARP通过广播消息来查找目标MAC地址,并在ARP缓存中保存映射关系,以提高网络效率。
  11. RARP:反向地址解析协议(RARP)是一种协议,用于将MAC地址映射到IP地址。RARP通过广播消息来查找目标IP地址,并在RARP服务器中保存映射关系,以提供动态IP地址分配。
  12. MTU:最大传输单元(MTU)是指在一个网络通信链路上最大允许的数据包大小。MTU取决于链路类型,如以太网、无线网络等,通常是固定的。如果数据包的大小超过MTU,则需要进行分片和重新组装。

总的来说,SLIP和CSLIP已经过时,PPP是常用的点对点协议,ARP和RARP用于地址映射,MTU则决定了一个网络通信链路上最大允许的数据包大小。

  1. ISO 2110:这可能是指ISO 2110标准,它定义了一种通用的网络协议体系结构。该标准定义了七层协议栈(物理层、数据链路层、网络层、传输层、会话层、表示层和应用层),每层都有特定的功能和协议。
  2. IEEE 802:这是一个系列的协议,由IEEE(电气和电子工程师协会)定义。该系列包括多个标准,如IEEE 802.3(以太网)、IEEE 802.11(Wi-Fi)和IEEE 802.15(蓝牙)等。每个标准定义了特定类型的网络,包括局域网、无线局域网和个人区域网络等。
  3. IEEE 802.2:这是IEEE 802系列中的一个子协议,也称为逻辑链路控制(LLC)协议。该协议定义了一种标准化的数据链路层协议,为高层协议提供了一个统一的接口。它在IEEE 802网络中广泛使用,包括以太网、令牌环网和无线局域网等。

总的来说,ISO 2110定义了一种通用的协议体系结构,IEEE 802系列定义了各种类型的网络标准,IEEE 802.2是IEEE 802系列中的一个子协议,为高层协议提供了一个统一的接口。

说一下TCP三次握手,为什么需要三次,不是四次或两次?

TCP 提供面向有连接的通信传输。面向有连接是指在数据通信开始之前先做好两端之间的准备工作。

所谓三次握手是指建立一个 TCP 连接时需要客户端和服务器端总共发送三个包以确认连接的建立。在socket编程中,这一过程由客户端执行connect来触发。

image.png

为什么TCP握手需要三次?

TCP是可靠的传输控制协议,而三次握手是保证数据可靠传输又能提高传输效率的最小次数。

为了实现可靠数据传输, TCP协议的通信双方,都必须维护一个序列号, 以标识发送出去的数据包中,哪些是已经被对方收到的。

举例说明:发送方在发送数据包(假设大小为 10 byte)时, 同时送上一个序号( 假设为 500),那么接收方收到这个数据包以后, 就可以回复一个确认号(510 = 500 + 10) 告诉发送方 “我已经收到了你的数据包, 你可以发送下一个数据包, 序号从 511 开始” 。

三次握手的过程即是通信双方相互告知序列号起始值,并确认对方已经收到了序列号起始值的必经步骤。

如果只是两次握手, 至多只有连接发起方的起始序列号能被确认, 另一方选择的序列号则得不到确认。

至于为什么不是四次,很明显,三次握手后,通信的双方都已经知道了对方序列号起始值,也确认了对方知道自己序列号起始值,第四次握手已经毫无必要了。

TCP的三次握手的漏洞-SYN洪泛攻击

但是在TCP三次握手中是有一个缺陷的,就是如果我们利用三次握手的缺陷进行攻击。这个攻击就是SYN洪泛攻击。三次握手中有一个第二次握手,服务端向客户端应答请求,应答请求是需要客户端IP的,攻击者就伪造这个IP,往服务器端狂发送第一次握手的内容,当然第一次握手中的客户端IP地址是伪造的,从而服务端忙于进行第二次握手但是第二次握手当然没有结果,所以导致服务器端被拖累,死机。

image.png

当然我们的生活中也有可能有这种例子,一个家境一般的IT男去表白他的女神被拒绝了,理由是他家里没矿,IT男为了报复,采用了洪泛攻击,他请了很多人伪装成有钱人去表白那位追求矿的女神,让女生每次想交往时发现表白的人不见了同时还联系不上了。

面对这种攻击,有以下的解决方案,最好的方案是防火墙。

无效连接监视释放

这种方法不停监视所有的连接,包括三次握手的,还有握手一次的,反正是所有的,当达到一定(与)阈值时拆除这些连接,从而释放系统资源。这种方法对于所有的连接一视同仁,不管是正常的还是攻击的,所以这种方式不推荐。

延缓TCB分配方法

一般的做完第一次握手之后,服务器就需要为该请求分配一个TCB(连接控制资源),通常这个资源需要200多个字节。延迟TCB的分配,当正常连接建立起来后再分配TCB则可以有效地减轻服务器资源的消耗。

使用防火墙

防火墙在确认了连接的有效性后,才向内部的服务器(Listener)发起SYN请求,

说一说TCP四次挥手,为什么是四次?

四次挥手即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发。

由于TCP连接是全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当甲方完成数据发送任务后,发送一个FIN给乙方来终止这一方向的连接,乙方收到一个FIN只是意味着不会再收到甲方数据了,但是乙方依然可以给甲方发送数据,直到这乙方也发送了FIN给甲方。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭。

image.png

为什么TCP的挥手需要四次?

TCP是全双工的连接,必须两端同时关闭连接,连接才算真正关闭。

如果一方已经准备关闭写,但是它还可以读另一方发送的数据。发送给FIN结束报文给对方,对方收到后,回复ACK报文。当这方也已经写完了准备关闭,发送FIN报文,对方回复ACK。两端都关闭,TCP连接正常关闭。

说一说你对IO的理解,什么是BIO,BIO阻塞在哪里?

见流程图

BIO阻塞是发生在操作系统上

说一说你对NIO的理解,NIO的优势点?

见流程图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/29083.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

互联网医院|线上医疗平台连接医者和患者的桥梁

近年来,随着互联网技术的飞速发展,互联网医院系统悄然崛起,引领着医疗行业的变革浪潮。这一系统以其出色的功能与服务,为广大患者带来了便捷、高效的医疗体验,将传统医疗模式推向了新的高度。 作为医疗界的新生力量&a…

FFmpeg常见命令行(三):FFmpeg转码

前言 在Android音视频开发中,网上知识点过于零碎,自学起来难度非常大,不过音视频大牛Jhuster提出了《Android 音视频从入门到提高 - 任务列表》。本文是Android音视频任务列表的其中一个, 对应的要学习的内容是:如何使…

七月学习总结

一晃暑期七月份已经结束了,八月份需要做的事情更多。 在成长的路上不断地迷茫,不断地前进。到底才能完成对自己地救赎。 目前想的就是以后走软件开发,往架构方向做,主语言Java或者go,408基础一定要扎实,计…

新型网络安全:从过程到明确结果

内容 过去的情况网络安全是理论性的,结果才是实际性的。这可能吗?我们现在的努力方向结论 本文讲述了为什么企业必须重新思考其网络安全方法:旧方法是否足够有效,是否可以完全适用?公司应采取哪些行动来实现内部信息…

【LeetCode】【数据结构】单链表OJ常见题型(二)

👀樊梓慕:个人主页 🎥个人专栏:《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》 🌝每一个不曾起舞的日子,都是对生命的辜负 目录 前言: 【LeetCode】面试题02.04. 分割链表 【Lee…

微信小程序申请步骤

微信公众平台链接:https://mp.weixin.qq.com/ 1、进到微信公众平台,点一下“点击注册”,挑选账号申请种类“小程序”,填好微信小程序用户信息,包含电子邮箱、登陆密码等。 2、微信公众平台会发送一封电子邮件&#xf…

Web3 solidity编写交易所合约 编写ETH和自定义代币存入逻辑 并带着大家手动测试

上文 Web3 叙述交易所授权置换概念 编写transferFrom与approve函数我们写完一个简单授权交易所的逻辑 但是并没有测试 其实也不是我不想 主要是 交易所也没实例化 现在也测试不了 我们先运行 ganache 启动一个虚拟的区块链环境 先发布 在终端执行 truffle migrate如果你跟着我…

# ⛳ Docker 安装、配置和详细使用教程-Win10专业版

目录 ⛳ Docker 安装、配置和详细使用教程-Win10专业版🚜 一、win10 系统配置🎨 二、Docker下载和安装🏭 三、Docker配置🎉 四、Docker入门使用 ⛳ Docker 安装、配置和详细使用教程-Win10专业版 🚜 一、win10 系统配…

ArcGIS Pro基础:【划分】工具实现等比例、等面积、等宽度划分图形操作

本次介绍【划分】工具的使用,如下所示,为该工具所处位置。使用该工具可以实现对某个图斑的等比例面积划分、相等面积划分和相等宽度划分。 【等比例面积】:其操作如下所示,其中: 1表示先选中待处理的图斑,2…

【Linux进程篇】进程概念(2)

【Linux进程篇】进程概念(2) 目录 【Linux进程篇】进程概念(2)进程状态Linux对进程的说法linux中的信号 进程状态查看Z(zombie)——僵尸进程僵尸进程的危害 孤儿进程 进程优先级基本概念查看系统进程PRI (优先级priori…

在java中操作redis_Data

1.引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency> 2.配置Redis数据源 redis:host: ${sky.redis.host}port: ${sky.redis.port}password: ${sk…

快速引流推广,快速引流推广策略分享,教你精准引流

科思创业汇 大家好&#xff0c;这里是科思创业汇&#xff0c;一个轻资产创业孵化平台。赚钱的方式有很多种&#xff0c;我希望在科思创业汇能够给你带来最快乐的那一种&#xff01; 在当今互联网的快速发展中&#xff0c;短视频脱颖而出&#xff0c;成为互联网的新秀&#xf…

用python做一个小游戏代码,用python制作一个小游戏

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;如何用python编写一个简单的小游戏&#xff0c;用python做一个小游戏代码&#xff0c;今天让我们一起来看看吧&#xff01; 今天呢&#xff0c;给大家展示一下Python有趣的小地方&#xff0c;展示给大家看看&#xff0c…

Ansible Playbook快速部署一主多从MySQL集群

部署目标&#xff1a; 1、快速部署一套一主两从的mysql集群 2、部署过程中支持交互式定义安装目录及监听端口号 部署清单目录结构&#xff1a; rootmaster:/opt/mysql# tree . . ├── group_vars │ └── all.yml ├── hosts ├── mysql.yml └── roles└── mys…

php实现登录的例子

界面&#xff1a; 登录界面login.html代码&#xff1a; <!DOCUMENT html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns"http://www.w3.org/1999/xhtml"…

ARM微架构

一、流水线 二、指令流水线 指令流水线 指令流水线 指令流水线 ARM指令流水线 ARM7采用3级流水线 ARM9采用5级流水线 Cortex-A9采用8级流水线 注1&#xff1a;虽然流水线级数越来越多&#xff0c;但都是在三级流水线的基础上进行了细分 PC的作用&#xff08;取指&#xff09; …

flutter开发实战-video_player视频播放功能及视频缓存

flutter开发实战-video_player视频播放功能及视频缓存 最近开发过程中video_player播放视频&#xff0c; 一、引入video_player 在pubspec.yaml引入video_player video_player: ^2.7.0在iOS上&#xff0c;video_player使用的是AVPlayer进行播放。 在Android上&#xff0c;…

python-docx常用方法总结

由于最近有任务需要自动生成word报告&#xff0c;因此学习了一些python-docx的使用方法&#xff0c;在此总结。 目前网上相关的资料不算太多&#xff0c;且大多数都很简单。有一些稍微复杂的需求往往找不到答案&#xff0c;很多想要的方法这个库似乎并没有直接提供。在git上看…

Dockerfile定制Tomcat镜像

Dockerfile中的打包命令 FROM &#xff1a; 以某个基础镜像作为此镜像的基础 RUN &#xff1a; RUN后面跟着linux常用命令&#xff0c;如RUN echo xxx >> xxx,注意&#xff0c;RUN 不能用于执行命令&#xff0c;因为每个RUN都是独立运行的&#xff0c;RUN 的cd对镜像中的…

PHP8的循环控制语句-PHP8知识详解

我们在上一节讲的是条件控制语句&#xff0c;本节课程我们讲解循环控制语句。循环控制语句中&#xff0c;主要有for循环、while循环、do...while循环和foreach循环。 在编写代码时&#xff0c;经常需要反复运行同一代码块。我们可以使用循环来执行这样的任务&#xff0c;而不是…