【C++从0到王者】第十七站:手把手教你写一个stack和queue及deque的底层原理

文章目录

  • 一、stack
    • 1.利用适配器
    • 2.栈的实现
  • 二、queue
  • 三、deque
    • 1.deque介绍
    • 2.deque的接口
    • 3.deque的基本使用
    • 4.deque的效率
    • 5.deque的原理

一、stack

1.利用适配器

我们不可能写了一份数组栈以后,还要在手写一个链式栈,这样显得太冗余了。于是我们可以利用适配器,传递一个我们想要使用的类型。这样我们的栈就可以做到数组栈和链式栈的秒切换了。从我们用的角度来说并没有太大差别,但是底层早已大变样了。

	template<class T, class Container>class stack{public:private:Container _con;};

2.栈的实现

有了上面的思路,我们就可以很容易的完成栈的接口

#pragma once
#include<vector>
#include<list>
namespace Sim
{template<class T, class Container = vector<T>>class stack{public:void push(const T& val){_con.push_back(val);}void pop(){_con.pop_back();}const T& top(){return _con.back();}size_t size(){return _con.size();}bool empty(){return _con.empty();}private:Container _con;};void test_stack(){stack<int> st1;stack<int, list<int>> st2;st1.push(1);st1.push(2);st1.push(3);st1.push(4);while (!st1.empty()){cout << st1.top() << " ";st1.pop();}cout << endl;}
};

在这里插入图片描述

二、queue

如下所示,是queue的模拟实现,需要注意的是,queue是不可以用vector进行适配的,因为vector并未提供pop_front接口,但是如果想要强制适配的话也是可以的,使用erase接口即可

#pragma once
#pragma once
#include<vector>
#include<list>
namespace Sim
{template<class T, class Container = list<T>>class queue{public:void push(const T& val){_con.push_back(val);}void pop(){_con.pop_front();}const T& front(){return _con.front();}const T& back(){return _con.back();}size_t size(){return _con.size();}bool empty(){return _con.empty();}private:Container _con;};void test_queue(){queue<int> q1;q1.push(1);q1.push(2);q1.push(3);q1.push(4);while (!q1.empty()){cout << q1.front() << " ";q1.pop();}cout << endl;}
};

在这里插入图片描述

三、deque

1.deque介绍

虽然我们上面使用的适配器缺省参数都是vector或者list,但是我们会发现,库里面的stack和list它的适配器都是deque。deque听名字好像是个队列,名字是双端队列。但是队列是有先进先出的特性的,它不是那么特别符合队列。

在这里插入图片描述
Deque(通常发音像“deck”)是双端队列的不规则缩写。双端队列是具有动态大小的序列容器,可以在两端(前端或后端)扩展或收缩。

特定的库可能以不同的方式实现deque,通常是某种形式的动态数组。但在任何情况下,它们都允许通过随机访问迭代器直接访问单个元素,并根据需要通过扩展和收缩容器来自动处理存储。

因此,它们提供了类似于向量的功能,但在序列的开始,而不仅仅是在序列的末尾,也可以有效地插入和删除元素。但是,与vector不同,deque不能保证将其所有元素存储在连续的存储位置:通过偏移指向另一个元素的指针来访问deque中的元素会导致未定义的行为。

vector和deque都提供了非常相似的接口,可以用于类似的目的,但两者在内部的工作方式却完全不同:vector使用单个数组,偶尔需要为增长重新分配,而deque的元素可以分散在不同的存储块中,容器内部保留必要的信息,以便在恒定时间内使用统一的顺序接口(通过迭代器)直接访问其任何元素。因此,deque在内部比vector更复杂,但这使得它们在某些情况下更有效地增长,特别是对于非常长的序列,重新分配变得更加昂贵。

对于涉及频繁插入或删除除开始或结束位置以外的元素的操作,deque的性能更差,迭代器和引用的一致性也不如列表和前向列表。

2.deque的接口

如下所示,是deque的接口,我们可以发现,它似乎同时具有list和vector的接口。而且它的迭代器还是随机迭代器。
在这里插入图片描述

deque的接口像是vector和list的合体。但是它看似很强,实际上效率不是很高。单论头插头删,尾插尾删效率还是不错的,但是综合性不是很好。

3.deque的基本使用

void test_deque()
{deque<int> dq;dq.push_back(1);dq.push_back(2);dq.push_back(3);dq.push_back(4);for (int i = 0; i < dq.size(); i++){cout << dq[i] << " ";}cout << endl;

我们可以得知
在这里插入图片描述

4.deque的效率

我们在前面说过,deque的综合效率是不高的。我们可以用下面的代码来看出

void test_op()
{srand(time(0));const int N = 1000000;vector<int> v1;vector<int> v2;v1.reserve(N);v2.reserve(N);deque<int> dq1;deque<int> dq2;for (int i = 0; i < N; ++i){auto e = rand();//v1.push_back(e);//v2.push_back(e);dq1.push_back(e);dq2.push_back(e);}// 拷贝到vector排序,排完以后再拷贝回来int begin1 = clock();// 先拷贝到vectorfor (auto& e : dq1){v1.push_back(e);}// 排序sort(v1.begin(), v1.end());// 拷贝回去size_t i = 0;for (auto& e : dq1){e = v1[i++];}int end1 = clock();int begin2 = clock();sort(dq2.begin(), dq2.end());int end2 = clock();printf("deque copy vector sort:%d\n", end1 - begin1);printf("deque sort:%d\n", end2 - begin2);
}

在这里插入图片描述

deque效率慢的原因主要就是因为它的随机访问[]的效率太低

5.deque的原理

我们知道:

  1. 对于数组,可以下标随机访问,但是存在扩容问题,中间和头部插入效率低下
    在这里插入图片描述

  2. 对于链表,任意位置插入删除效率合适,按需申请释放,但是不支持随机访问

在这里插入图片描述

而现在,我们使用的deque的结构是这样,它是一段一段的开空间,每段空间都是一样大的,然后通过一个中控数组(指针数组)进行连接起来。想要扩容就在连接一块空间即可。当指针数组满了,就中控数组扩容即可。这样一来扩容的代价就很低。不需要拷贝原来的数组。对于头插尾插也很简单,就用专门的两个空间进行头插尾插即可

在这里插入图片描述

它相比vector极大的缓解了扩容、头插头删问题。但是它的[]运算符不够极致。它的[]需要计算在哪个buff数组,在哪个buff数组的第几个。如果我们想要使用它的[]运算符,它内部的逻辑会经历一下几个步骤

  1. 先看在不在第一个buff数组里面,如果在,就直接访问
  2. 不在第一个buff数组里面,i-=第一个buff数组的size
  3. 第几个buff=i/buff.size()
  4. 在这个buff的第几个=i%buff.size()

它相比list,可以支持随机访问,cpu高速缓存访问效率不错,头插尾插删除不错,但是中间位置插入删除效率低下。因为我们需要扩容或者挪动buff的数据。无论哪一种,效率都很低。

根据deque的底层原理,其实对于高频的头插头删,尾插尾删来说,deque还很适合,所以deque用于适配stack和queue来说是很合适的,因为它们只涉及到头部和尾部的插入删除,不涉及中间位置的插入删除

实际上在库里面的deque是更加复杂的,它的迭代器由四个指针组成,这使得deque更加复杂,首先由node指向中控,即指向当前的buff数组,cur指向当前buff数组中的某个数据,first和last指向当前数组的头和尾
在这里插入图片描述

在这里插入图片描述


好了,本期内容就到这里了
如果对你有帮助的话,不要忘记点赞加收藏哦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/26377.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

详解Linux中的socket函数

2023年8月3日&#xff0c;周四下午 目录 函数原型参数domain参数type参数protocol举例说明参数type和参数protocol之间的关系 函数原型 #include <sys/socket.h>int socket(int domain, int type, int protocol);参数domain domain是“域”的意思&#xff0c;其值为AF…

Redis未授权访问漏洞

Redis未授权访问漏洞 一、未授权访问漏洞概述、二、Redis未授权访问特征三、Redis常用命令四、Redis历史漏洞4.1、Redis未授权访问4.2、Redis主从复制RCE 五、Reids未授权访问利用5.1、写webshell5.2、写定时任务反弹shell 一、未授权访问漏洞概述、 未授权访问漏洞可以理解为需…

【C++】Lambda表达式的使用

学习目标&#xff1a; 例如&#xff1a; 了解Lambda的优点 掌握Lambda表达式的使用 了解Lambda表达式的底层原理 学习内容&#xff1a; Lambda表达式的语法 文章目录 学习目标&#xff1a;学习内容&#xff1a;Lambda表达式排序案例Lambda表达式语法捕捉列表Lambda表达式模拟…

Javascript 数据结构[入门]

作者&#xff1a;20岁爱吃必胜客&#xff08;坤制作人&#xff09;&#xff0c;近十年开发经验, 跨域学习者&#xff0c;目前于海外某世界知名高校就读计算机相关专业。荣誉&#xff1a;阿里云博客专家认证、腾讯开发者社区优质创作者&#xff0c;在CTF省赛校赛多次取得好成绩。…

3年经验,面试测试岗只会功能测试开口要求18K,令我陷入沉思。

由于朋友临时有事&#xff0c; 所以今天我代替朋友进行一次面试&#xff0c;公司需要招聘一位自动化测试工程师&#xff0c;我以很认真负责的态度完成这个过程&#xff0c; 大概近30分钟。 主要是技术面试&#xff0c; 在近30分钟内&#xff0c; 我与被面试者是以交流学习的方式…

java linq多字段排序时间比较

public static void main(String[] args) {//100万条数据List<CrmInvestSaleUserCount> waitAssignUserList new ArrayList<>();for (int i 0; i < 1000000; i) {waitAssignUserList.add(new CrmInvestSaleUserCount().setSales_username("test" i…

架构训练营学习笔记:6-2 微服务基础选型

基础选型 微服务基础设施架构 优先级 其中&#xff0c;核心 就是服务注册、服务发现、服务路由。 模式1-嵌入SDK 模式2-反向代理式 模式3-网络代理式&#xff08;Service Mesh&#xff09; 模式对比 常见微服务框架选择 嵌入SDK-dubbo Spring Cloud 反向代理式 APISIX …

小研究 - 基于 SpringBoot 微服务架构下前后端分离的 MVVM 模型(一)

本文主要以SpringBoot微服务架构为基础&#xff0c;提出了前后端分离的MVVM模型&#xff0c;并对其进行了详细的分析以及研究&#xff0c;以此为相关领域的工作人员提供一定的技术性参考。 目录 1 研究背景 2 SpringBoot微服务优势 3 微服务 3.1 技术发展 3.2 技术优势 在…

流数据湖平台Apache Paimon(五)集成 Spark 引擎

文章目录 第4章 集成 Spark 引擎4.1 环境准备4.2 Catalog4.2.1 文件系统4.2.2 Hive 4.3 DDL4.3.1 建表4.3.2 修改表 第4章 集成 Spark 引擎 4.1 环境准备 Paimon 目前支持 Spark 3.4、3.3、3.2 和 3.1。课程使用的Spark版本是3.3.1。 1&#xff09;上传并解压Spark安装包 t…

MyBatis枚举映射类讨论

前言 本篇需要对于MyBatis有一定的认识&#xff0c;而且只是针对于TypeHandler接口来讨论&#xff0c;暂不讨论其他方面的问题 TypeHandler概叙 TypeHandler是MyBatis设计的一个用于参数的接口&#xff0c;你们会不会很好奇MyBatis是如何把整形&#xff0c;时间&#xff0c;字符…

模版下载和Excel文件导入

模版下载 模版下载 模版下载 /*** 生成模版** param* return AppResponse*/public AppResponse ExcelFile() throws IOException {// 创建一个新的Excel工作簿Workbook workbook new XSSFWorkbook();// 创建一个工作表Sheet sheet workbook.createSheet("页面拨测模板&…

C++类的定义和对象的创建

一、问题引入 C类和对象到底是什么意思&#xff1f; 1、C 中的类&#xff08;Class&#xff09;可以看做C语言中结构体&#xff08;Struct&#xff09;的升级版。结构体是一种构造类型&#xff0c;可以包含若干成员变量&#xff0c;每个成员变量的类型可以不同&#xff1b; …

2023-08-06力扣今日二题

链接&#xff1a; 剑指 Offer 09. 用两个栈实现队列 题意&#xff1a; 如题 解&#xff1a; 第一个栈逆序栈&#xff0c;存储插入顺序&#xff0c;另一个栈正序栈负责弹出数据 优化思想&#xff1a;只有当st2正序栈为空时才将st1逆序栈的转移过来&#xff08;若st2不为空…

使用langchain与你自己的数据对话(五):聊天机器人

之前我已经完成了使用langchain与你自己的数据对话的前四篇博客&#xff0c;还没有阅读这四篇博客的朋友可以先阅读一下&#xff1a; 使用langchain与你自己的数据对话(一)&#xff1a;文档加载与切割使用langchain与你自己的数据对话(二)&#xff1a;向量存储与嵌入使用langc…

【探索Linux】—— 强大的命令行工具 P.2(Linux下基本指令)

前言 前面我们讲了C语言的基础知识&#xff0c;也了解了一些数据结构&#xff0c;并且讲了有关C的一些知识&#xff0c;也相信大家都掌握的不错&#xff0c;今天博主将会新开一个Linux专题&#xff0c;带领大家继续学习有关Linux的内容。今天第一篇文章博主首先带领大家了解一下…

uniapp两个单页面之间进行传参

1.单页面传参&#xff1a;A --> B url: .....?code JSON.stringify(param), 2.单页面传参B–>Auni.$emit() uni.$on()

Python爬虫——解析_jsonpath解析淘票票网站

jsonpath简单解析淘票票网站&#xff0c;获取城市名称 代码如下&#xff1a; import urllib.request import json import jsonpathurl https://dianying.taobao.com/cityAction.json?activityId&_ksTS1691330599914_108&jsoncallbackjsonp109&actioncityAction&…

使用HTTP隧道时如何应对目标网站的反爬虫监测?

在进行网络抓取时&#xff0c;我们常常会遇到目标网站对反爬虫的监测和封禁。为了规避这些风险&#xff0c;使用代理IP成为一种常见的方法。然而&#xff0c;如何应对目标网站的反爬虫监测&#xff0c;既能保证数据的稳定性&#xff0c;又能确保抓取过程的安全性呢&#xff1f;…

【学习笔记】[SDOI2017] 硬币游戏

抽象&#x1f605; 我忍不了了&#xff0c;直接上概率生成函数&#x1f605; 首先要做过这道题 [CTSC2006] 歌唱王国 设 F i ( x ) ∑ f j x j F_i(x)\sum f_jx^j Fi​(x)∑fj​xj&#xff0c;其中 f j f_j fj​表示 ∣ T ∣ j |T|j ∣T∣j时第 i i i个人获胜的概率 设 …

[CKA]考试之查看pod的cpu

由于最新的CKA考试改版&#xff0c;不允许存储书签&#xff0c;本博客致力怎么一步步从官网把答案找到&#xff0c;如何修改把题做对&#xff0c;下面开始我们的 CKA之旅 题目为&#xff1a; Task 找出标签是namecpu-loader的Pod&#xff0c;并过滤出使用CPU最高的Pod&#…