ARM 内存屏障指令

ARM 内存屏障指令

  • 1. dmb (Data Memory Barrier) 数据内存栅栏
  • 2. dsb (Data Synchronization Barrier) 数据同步栅栏
  • 3. isb (Instruction Synchronization Barrier) 指令同步栅栏
  • 4. ARM 内存屏障指令如何选择使用?
  • 5. 使用示例
    • 5.1. DMB指令示例:
    • 5.2. DSB指令示例:
    • 5.3. ISB指令示例:

1. dmb (Data Memory Barrier) 数据内存栅栏

  • DMB 指令用于确保数据的顺序性。会等待之前发出的所有存储指令(Store)和加载指令(Load)完成后,才会允许之后的存储和加载指令执行。
  • DMB 提供了三种屏障类型:Full System、Inner Shareable 和 Non-Shareable。
    • Full System DMB(dmb sy)屏障对整个系统中的数据访问进行排序和同步。
    • Inner Shareable DMB(dmb ish)屏障对内部可共享的数据访问进行排序和同步。
    • Non-Shareable DMB(dmb nsh)屏障对非共享的数据访问进行排序和同步。

使用场景:

  • 在多线程编程中,使用 DMB 来确保数据的顺序性,特别是在共享内存环境中。
  • 在使用共享数据结构时,使用 DMB 来保证数据的一致性和同步。
  • 在设备驱动程序编程中,使用 DMB 来确保设备寄存器的读写顺序和同步。

2. dsb (Data Synchronization Barrier) 数据同步栅栏

  • DSB 指令用于确保数据和指令的顺序性,并等待之前的所有指令完成。
  • DSB 提供了三种屏障类型:Full System、Inner Shareable 和 Non-Shareable。
    • Full System DSB(dsb sy)屏障对整个系统中的数据和指令访问进行排序和同步。
    • Inner Shareable DSB(dsb ish)屏障对内部可共享的数据和指令访问进行排序和同步。
    • Non-Shareable DSB(dsb nsh)屏障对非共享的数据和指令访问进行排序和同步。

使用场景:

  • 在多线程编程中,使用 DSB 来确保数据和指令的顺序性,特别是在多处理器核心或多线程环境中。
  • 在需要全局同步的场景下,使用 DSB 来实现全局的指令栅栏,确保所有处理器核心上的指令都按照正确的顺序执行。
  • 在修改控制寄存器或切换执行状态后,使用 DSB 来确保后续指令的正确执行。

3. isb (Instruction Synchronization Barrier) 指令同步栅栏

isb 指令会等待之前的所有指令完成,并清空指令流水线中的缓存,刷新指令预取队列(instruction prefetch queue),以确保执行的指令是最新的版本,可确保后续指令按照正确的顺序执行。使用 isb 可以避免执行过程中出现错误的指令或无效的指令。

使用场景:

  • 在涉及到修改程序状态、刷新指令缓存或确保指令的顺序性的场景中,使用 ISB 来刷新流水线中的指令,确保后续指令按照正确的顺序执行。
  • 在设备驱动程序编程中,使用 ISB 来确保设备寄存器的写入在读取之前生效。
  1. wfe (Wait For Event) 等待事件指令

WFE(Wait For Event)是 ARM 架构中的一个指令,用于在低功耗和多线程环境下控制处理器的行为。WFE 指令的作用是使处理器进入等待状态,直到接收到一个事件或中断信号。

当处理器执行 WFE 指令时,它会检查事件状态。如果没有未处理的事件,处理器将进入低功耗状态,减少功耗。一旦有事件发生,如中断信号或同步事件,处理器将退出等待状态并继续执行后续指令。

WFE 指令的使用场景通常涉及以下情况:

  • 多线程环境下的同步:当一个线程需要等待其他线程的某个事件发生时,可以使用 WFE 指令使线程进入等待状态,直到其他线程发出事件信号。
  • 低功耗模式下的节能:在某些低功耗应用场景中,可以使用 WFE 指令来降低处理器的功耗,直到需要处理的事件发生。

需要注意的是,WFE 指令只是将处理器置于等待状态,具体的事件触发和事件处理需要根据具体的应用和系统设计来完成。在多线程编程中,通常需要与其他同步机制(如信号量、事件标志等)结合使用,以实现正确的线程同步和事件处理。

  1. sev (Send Event) 发送事件指令

SEV(Send Event)是 ARM 架构中的一个指令,用于在多处理器系统中发送事件信号。SEV 指令的作用是发送一个事件信号给其他处理器核心,以通知它们有待处理的事件。

当一个处理器核心执行 SEV 指令时,它会向其他处理器核心发送一个事件信号。这个事件信号可以被其他核心捕获并用于触发相应的处理操作。SEV 指令的执行不会引起处理器核心的等待状态,它只是发送一个通知信号。

SEV 指令的使用场景通常涉及以下情况:

  • 多处理器系统中的同步:当一个处理器核心需要通知其他核心某个事件已经发生时,可以使用 SEV 指令发送事件信号,其他核心可以捕获该信号并作出相应的响应。
  • 多线程环境中的同步:在多线程编程中,可以使用 SEV 指令将事件信号发送给其他线程,以触发它们的相应操作。

需要注意的是,SEV 指令只是发送事件信号,并不负责事件的处理和同步。具体的事件处理和同步机制需要根据具体的应用和系统设计来实现。

4. ARM 内存屏障指令如何选择使用?

选择使用 ARM 内存屏障指令时,需要考虑以下几个因素:

  1. 内存一致性模型:首先要了解所使用的 ARM 处理器的内存一致性模型。ARM 支持多种内存一致性模型,如 ARMv7 的内存模型(如 ARMv7-A、ARMv7-R)和 ARMv8 的内存模型(如 ARMv8-A)。了解处理器的内存一致性模型可以帮助确定何时需要使用内存屏障指令以满足一致性要求。

  2. 访问类型和共享性:根据访问类型和共享性,选择适当的内存屏障指令。如果是针对数据访问的屏障,可以使用 DMB 指令,根据共享性选择相应的屏障类型。如果是针对指令访问的屏障,可以使用 ISB 指令。如果需要同时对数据和指令进行排序和同步,可以使用 DSB 指令。

  3. 同步要求:根据同步要求选择适当的屏障类型。如果需要等待之前的所有指令或数据访问完成,可以选择 Full System 类型的屏障。如果只需要对内部可共享的数据或指令进行排序和同步,可以选择 Inner Shareable 类型的屏障。如果只涉及非共享的数据或指令访问,可以选择 Non-Shareable 类型的屏障。

  4. 性能和功耗:内存屏障指令可能会引入一定的性能开销,因此需要权衡性能和功耗要求。在某些情况下,可能不需要使用内存屏障指令,特别是在单线程或无需严格同步的场景中。仅在确实需要保证内存顺序性和同步时才使用内存屏障指令。

综上所述,选择使用 ARM 内存屏障指令需要综合考虑内存一致性模型、访问类型、共享性、同步要求、性能和平台支持等因素。根据具体的需求和场景,选择适当的内存屏障指令以确保正确的内存访问顺序和同步。

5. 使用示例

ARM 内存屏障指令主要包括以下几种:

5.1. DMB指令示例:

示例 1:在多线程编程中,确保对共享数据的修改在排序后对其他线程可见:

// 线程 A 更新共享数据
shared_data = new_value;// 内存屏障,确保共享数据更新对其他线程可见
__asm__ volatile("dmb sy" ::: "memory");// 线程 B 读取共享数据
value = shared_data;

示例 2:在设备驱动程序中,确保对设备的写入操作完成后再进行后续操作:

// 执行设备写入操作
write_to_device();// 内存屏障,确保设备写入操作完成
__asm__ volatile("dmb sy" ::: "memory");// 执行后续操作

5.2. DSB指令示例:

以下是几个使用 DSB(Data Synchronization Barrier)指令的示例:

示例1:保证数据加载顺序

// 线程 A
// 加载数据到寄存器
data1 = *ptr1;
data2 = *ptr2;// 执行一些操作// 在访问 data1 和 data2 之前插入 DSB 指令,确保数据加载顺序
__asm__ volatile("dsb sy" ::: "memory");// 使用加载的数据进行后续操作
// ...// 线程 B
// 修改共享数据
*ptr1 = new_value1;
*ptr2 = new_value2;

示例2:保证数据存储顺序

// 线程 A
// 执行一些操作// 在存储数据之后插入 DSB 指令,确保数据存储顺序
*ptr = data;
__asm__ volatile("dsb sy" ::: "memory");// 线程 B
// 加载共享数据
data = *ptr;// 执行后续操作
// ...

示例3:等待操作完成

// 线程 A
// 发起一些异步操作
initiate_async_operation();// 在等待操作完成之前插入 DSB 指令,确保操作完成前的所有指令已执行
__asm__ volatile("dsb sy" ::: "memory");// 等待操作完成
while (!is_operation_completed())
{// 等待操作完成
}// 操作完成后执行后续操作
// ...

这些示例展示了 DSB 指令在不同场景下的使用方式。通过在合适的位置插入 DSB 指令,可以确保数据的顺序性和操作的正确执行顺序。请根据具体的需求和场景,选择适当的位置插入 DSB 指令以满足同步和顺序要求。

5.3. ISB指令示例:

以下是几个使用 ISB(Instruction Synchronization Barrier)指令的示例:

示例1:刷新指令流水线

// 执行一些指令
// ...// 在需要刷新指令流水线的位置插入 ISB 指令
__asm__ volatile("isb");// 执行后续指令
// ...

示例2:确保指令顺序性

// 执行一些指令
// ...// 在需要确保指令顺序性的位置插入 ISB 指令
__asm__ volatile("isb");// 执行后续指令
// ...

示例3:在中断处理程序中使用 ISB 指令

// 中断处理程序
void interrupt_handler()
{// 处理中断事件// 在处理中断事件后插入 ISB 指令,确保后续指令按正确顺序执行__asm__ volatile("isb");// 执行后续指令// ...}

示例4:确保指令的加载顺序

// 线程 A
// 加载指令到指令缓存
instruction1 = *instr_ptr1;
instruction2 = *instr_ptr2;// 执行一些操作// 在访问加载的指令之前插入 ISB 指令,确保指令加载顺序
__asm__ volatile("isb");// 执行加载的指令
// ...// 线程 B
// 修改共享指令
*instr_ptr1 = new_instr1;
*instr_ptr2 = new_instr2;

这些示例展示了 ISB 指令在不同场景下的使用方式。通过在适当的位置插入 ISB 指令,可以刷新指令流水线并确保指令的顺序性。具体的使用方式应根据具体的需求和场景进行选择和调整。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/25892.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java.lang.IllegalStateException: Failed to load ApplicationContext

问题描述 原因是我在进行微服务远程调用的时候报的错误。 解决方案 原来是jdk版本不一样导致的问题,改成1.8就行了

【学习日志】2023.Aug.6,支持向量机的实现

2023.Aug.6,支持向量机的实现 参考了大佬的代码,但有些地方似乎还有改进的空间,我加了注释 #codingutf-8 #Author:Dodo #Date:2018-12-03 #Email:lvtengchaopku.edu.cn #Blog:www.pkudodo.com数据集:Mnist 训练集数量&#xff1…

银河麒麟服务器ky10-server在线一键安装docker

脚本代码 # ---------------在线安装docker------------------- yum install docker -y # 修改docker拉取源为国内 rm -rf /etc/docker mkdir -p /etc/docker touch /etc/docker/daemon.json cat >/etc/docker/daemon.json<<EOF{"registry-mirrors": [&q…

7-数据结构-(带头节点)单链表的增删改查

问题&#xff1a; 单链表带头结点的创建以及输出&#xff0c;以及带与不带头节点的区别 思路&#xff1a; 单链表&#xff0c;逻辑上是线性结构&#xff0c;由许多单链表结点&#xff0c;串成一串。其单链表结构体中&#xff0c;数据项由data数据域和结点指针域。带头节点是为…

关于游戏的笔记

关于搭建秦时明月2一键端&#xff0c;并且开启秘境神秘商人东海寻仙幻化 1.该游戏下主要的目录 gm端 服务框架 服务端 2.修改对应的文件 C:\qs\Q2Server\server\conf_common\ManagerAddress.xmlC:\qs\Q2Server\server\conf_manager\GateServer.xml修改ip 3.启动gm startup…

零基础学习大数据需要什么基础么

大数据技术的体系庞大且复杂&#xff0c;每年都会涌现出大量新的技术&#xff0c;目前大数据行业所涉及到的核心技术主要就是&#xff1a;数据采集、数据存储、数据清洗、数据查询分析和数据可视化。 学习大数据需要掌握什么语言基础&#xff1f; 1、Java基础 大数据框架90%以…

阿里云官方关于数据安全保护的声明

“阿里云监控用户的数据流量&#xff1f;”“真的假的&#xff1f;”随着近日早晨 朱峰肥鹅旅行 对阿里云的一条朋友圈截图传遍了整个IT圈。 对于网络上的各种传播&#xff0c;以下是阿里云的官方答复&#xff0c;原文如下&#xff1a; 关于数据安全保护的声明 今天有客户反映…

【torchlars】windows下载github中的torchlars包遇到的问题及解决方案

环境 python3.7 windows10 cuda11.1 pytorch1.8.1 虚拟环境miniconda 目的 windows下载github中的torchlars包 遇到的问题 问题一&#xff1a;直接下载好文件夹输入指令&#xff1a;python setup.py install 出现错误&#xff1a;RuntimeError: Error compiling objects f…

opencv35-形态学操作-腐蚀cv2.erode()

形态学&#xff0c;即数学形态学&#xff08;Mathematical Morphology&#xff09;&#xff0c;是图像处理过程中一个非常重要的研 究方向。形态学主要从图像内提取分量信息&#xff0c;该分量信息通常对于表达和描绘图像的形状具有 重要意义&#xff0c;通常是图像理解时所使用…

oracle 自增id 和 更新时间戳

oracle 自增id 和 更新时间戳 需求 &#xff08;1&#xff09;需要让数据库插入数据时 I_ID 字段自增&#xff1b; &#xff08;2&#xff09;数据库更新数据后 S_LAST_UPDATETIME 字段更新当前时间 1、创建序列 CREATE SEQUENCE TABLENAME_I_ID_Sequence INCREMENT BY 1 S…

最佳路径优先搜索算法

本来想直接写A* 的&#xff0c;不过看完最佳路径优先搜索算法后觉得还是要先理解一下这个算法后才能更好的理解A* 算法&#xff0c;所以把这篇文章放到A* 前面。 基本概念 最佳优先搜索算法&#xff08;Best-first-searching&#xff09;是一种启发式搜索算法&#xff08;Heu…

Python实现GA遗传算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 遗传算法&#xff08;Genetic Algorithm&#xff0c;GA&#xff09;最早是由美国的 John holland于20世…

Docker从零到掌握(详解)

目录 1.初识Docker 1.1 为什么使用docker 1.2 Docker技术 1.3.安装Docker 1.4.Docker架构 1.5.配置Docker镜像加速器 2.Docker常用命令 2.1.Docker服务相关的命令 2.2.Docker镜像相关的命令 2.3.Docker容器相关的命令 3. 容器的数据卷 3.1.数据卷的概念和作用 3.2…

Idea添加mybatis的mapper文件模版

针对Java开发人员&#xff0c;各种框架的配置模版的确是需要随时保留一份&#xff0c;在使用的时候&#xff0c;方便复制粘贴&#xff0c;但是也依然不方便&#xff0c;我们可以给开发工具&#xff08;IDE&#xff09;中添加配置模版&#xff0c;这里我介绍下使用idea开发工具&…

pip安装jupyter notebook

之前电脑安装了anaconda&#xff0c;里面安装了jupyter notebook&#xff0c;用来做PPT之类的展示总让我觉得有点“炫酷”。 现在换了新电脑。没有anaconda&#xff0c;纯粹只是装了python3.11&#xff0c;然后突然也想手工安装下jupyter notebook&#xff0c;于是只能通过pip方…

Python 中的机器学习简介:多项式回归

一、说明 多项式回归可以识别自变量和因变量之间的非线性关系。本文是关于回归、梯度下降和 MSE 系列文章的第三篇。前面的文章介绍了简单线性回归、回归的正态方程和多元线性回归。 二、多项式回归 多项式回归用于最适合曲线拟合的复杂数据。它可以被视为多元线性回归的子集。…

uniapp返回

// 监听返回事件onNavigationBarButtonTap() {uni.showModal({title: 提示,content: 确定要返回吗&#xff1f;,success: (res) > {if (res.confirm) {uni.navigateBack({delta: 2})}}})},

Opencv-C++笔记 (16) : 几何变换 (图像的翻转(镜像),平移,旋转,仿射,透视变换)

文章目录 一、图像平移二、图像旋转2.1 求旋转矩阵2.2 求旋转后图像的尺寸2.3手工实现图像旋转2.4 opencv函数实现图像旋转 三、图像翻转3.1左右翻转3.2、上下翻转3.3 上下颠倒&#xff0c;左右相反 4、错切变换4.1 实现错切变换 5、仿射变换5.1 求解仿射变换5.2 OpenCV实现仿射…

篇十:外观模式:简化复杂系统

篇十&#xff1a;“外观模式&#xff1a;简化复杂系统” 开始本篇文章之前先推荐一个好用的学习工具&#xff0c;AIRIght&#xff0c;借助于AI助手工具&#xff0c;学习事半功倍。欢迎访问&#xff1a;http://airight.fun/。 另外有2本不错的关于设计模式的资料&#xff0c;分…

力扣 -- 139. 单词拆分

一、题目 题目链接&#xff1a;139. 单词拆分 - 力扣&#xff08;LeetCode&#xff09; 二、解题步骤 下面是用动态规划的思想解决这道题的过程&#xff0c;相信各位小伙伴都能看懂并且掌握这道经典的动规题目滴。 三、参考代码 class Solution { public:bool wordBreak(str…