opencv35-形态学操作-腐蚀cv2.erode()

形态学,即数学形态学(Mathematical Morphology),是图像处理过程中一个非常重要的研 究方向。形态学主要从图像内提取分量信息,该分量信息通常对于表达和描绘图像的形状具有 重要意义,通常是图像理解时所使用的最本质的形状特征。例如,在识别手写数字时,能够通
过形态学运算得到其骨架信息,在具体识别时,仅针对其骨架进行运算即可。形态学处理在视觉检测、文字识别、医学图像处理、图像压缩编码等领域都有非常重要的应用。

形态学操作主要包含:腐蚀、膨胀、开运算、闭运算、形态学梯度(Morphological Gradient)运算、顶帽运算(礼帽运算)、黑帽运算等操作。腐蚀操作和膨胀操作是形态学运算的基础,
将腐蚀和膨胀操作进行结合,就可以实现开运算、闭运算、形态学梯度运算、顶帽运算、黑帽运算、击中击不中等不同形式的运算。

腐蚀原理

腐蚀是最基本的形态学操作之一,它能够将图像的边界点消除,使图像沿着边界向内收缩,也可以将小于指定结构体元素的部分去除。

说白了就是让图片中的胖子慢慢的变成瘦子

腐蚀用来“收缩”或者“细化”二值图像中的前景,借此实现去除噪声、元素分割等功能。

例如,在图 8-1 中,左图是原始图像,右图是对其腐蚀的处理结果。

在这里插入图片描述
在腐蚀过程中,通常使用一个结构元来逐个像素地扫描要被腐蚀的图像,并根据结构元和被腐蚀图像的关系来确定腐蚀结果。

例如,在图 8-2 中,整幅图像的背景色是黑色的,前景对象是一个白色的圆形。图像左上角的深色小方块是遍历图像所使用的结构元。在腐蚀过程中,要将该结构元逐个像素地遍历整幅图像,并根据结构元与被腐蚀图像的关系,来确定腐蚀结果图像中对应结构元中心点位置的像素点的值。

在这里插入图片描述

需要注意的是,腐蚀操作等形态学操作是逐个像素地来改变值的,每次判定的点都是与结构元中心点所对应的点。

图 8-3 中的两幅图像表示结构元与前景色的两种不同关系。
根据这两种不同的关系来决定,腐蚀结果图像中的结构元中心点所对应位置像素点的像素值。

  1. 如果结构元完全处于前景图像中(图 8-3 的左图),就将结构元中心点所对应的腐蚀结果图像中的像素点处理为前景色(白色,像素点的像素值为 1)。
  2. 如果结构元未完全处于前景图像中(可能部分在,也可能完全不在,图 8-3 的右图),就将结构元中心点对应的腐蚀结果图像中的像素点处理为背景色(黑色,像素点的像素值为 0)。

在这里插入图片描述
针对图 8-3 中的图像,腐蚀的结果就是前景色的白色圆直径变小。上述结构元也被称为核。

例如,有需要被腐蚀的图像 img,其值如下,其中 1 表示白色前景,0 表示黑色背景:

[[0 0 0 0 0]
[0 1 1 1 0]
[0 1 1 1 0]
[0 1 1 1 0]
[0 0 0 0 0]]

有一个结构元 kernel,其值为:

[[1]
[1]
[1]]

如果使用结构元 kernel 对图像 img 进行腐蚀,则可以得到腐蚀结果图像 rst:

[[0 0 0 0 0]
[0 0 0 0 0]
[0 1 1 1 0]
[0 0 0 0 0]
[0 0 0 0 0]]

这是因为,当结构元 kernel 在图像 img 内逐个像素遍历时,只有当核 kernel 的中心点 “kernel[1,0]”位于 img 中的 img[2,1]、img[2,2]、img[2,3]时,核才完全处于前景图像中。

所以在腐蚀结果图像 rst 中,只有这三个点的值被处理为 1,其余像素点的值被处理为 0。

上述示例如图 8-4 所示,其中:

  1. 图(a)表示要被腐蚀的 img。
  2. 图(b)是核 kernel。
  3. 图©中的阴影部分是 kernel 在遍历 img 时,kernel 完全位于前景对象内部时的 3 个全部
    可能位置;此时,核中心分别位于 img[2,1]、img[2,2]和 img[2,3]处。
  4. 图(d)是腐蚀结果 rst,即在 kernel 完全位于前景图象中时,将其中心点所对应的 rst 中像素点的值置为 1;当 kernel 不完全位于前景图像中时,将其中心点对应的 rst 中像素点的值置为 0。

在这里插入图片描述

函数 cv2.erode() 说明

在 OpenCV 中,使用函数 cv2.erode()实现腐蚀操作,其语法格式为:

dst = cv2.erode( src, kernel[, anchor[, iterations[, borderType[,
borderValue]]]] )

式中:

  1. dst 是腐蚀后所输出的目标图像,该图像和原始图像具有同样的类型和大小。

  2. src 是需要进行腐蚀的原始图像,图像的通道数可以是任意的。但是要求图像的深度必须是 CV_8U、CV_16U、CV_16S、CV_32F、CV_64F 中的一种。

  3. kernel 代表腐蚀操作时所采用的结构类型。它可以自定义生成,也可以通过函数cv2.getStructuringElement()生成。

  4. anchor 代表 element 结构中锚点的位置。该值默认为(-1,-1),在核的中心位置。

  5. iterations 是腐蚀操作迭代的次数,该值默认为 1,即只进行一次腐蚀操作。

  6. borderType 代表边界样式,一般采用其默认值 BORDER_CONSTANT。该项的具体值如表 8-1 所示。

在这里插入图片描述

  1. borderValue 是边界值,一般采用默认值。在 C++中提供了函数 morphologyDefaultBorderValue()来返回腐蚀和膨胀的“魔力(magic)”边界值,Python 不支持该函数

代码示例 :使用数组演示腐蚀的基本原理

代码如下:

import cv2
import numpy as np
img=np.zeros((5,5),np.uint8)
#对图像进行赋值
img[1:4,1:4]=1
#设置卷积核
kernel = np.ones((3,1),np.uint8)
#对图像进行腐蚀操作
erosion = cv2.erode(img,kernel)
print("img=\n",img)
print("kernel=\n",kernel)
print("erosion=\n",erosion)

运行结果:

img=[[0 0 0 0 0][0 1 1 1 0][0 1 1 1 0][0 1 1 1 0][0 0 0 0 0]]
kernel=[[1][1][1]]
erosion=[[0 0 0 0 0][0 0 0 0 0][0 1 1 1 0][0 0 0 0 0][0 0 0 0 0]]

从本例中可以看到,只有当核 kernel 的中心点位于 img 中的 img[2,1]、img[2,2]、img[2,3]处时,核才完全处于前景图像中。

所以,在腐蚀结果图像中,只有这三个点的值为 1,其余点的值皆为 0。

示例2:使用函数 cv2.erode()完成图像腐蚀

代码如下:

import cv2
import numpy as np
o=cv2.imread("fushi.bmp",cv2.IMREAD_UNCHANGED)
#创建结构元素
kernel = np.ones((7,7),np.uint8)
#腐蚀
erosion = cv2.erode(o,kernel)
cv2.imshow("orriginal",o)
cv2.imshow("erosion",erosion)
cv2.waitKey()
cv2.destroyAllWindows()

运行效果:
左图是原始图像,右图是腐蚀处理结果。从图中可
以看到,腐蚀操作将原始图像内的毛刺腐蚀掉了。
在这里插入图片描述

调节函数 cv2.erode()的参数,观察不同参数控制下的图像腐蚀效果
使用参数 iterations = 5 对函数 cv2.erode()的迭代次数进行控制,让其迭代 5 次。

代码如下:

import cv2
import numpy as np
o=cv2.imread("fushi.bmp",cv2.IMREAD_UNCHANGED)
#创建结构元素
kernel = np.ones((7,7),np.uint8)
#腐蚀
erosion = cv2.erode(o,kernel,iterations = 5)
cv2.imshow("orriginal",o)
cv2.imshow("erosion",erosion)
cv2.waitKey()
cv2.destroyAllWindows()

从结果中可以看出迭代的次数越多,腐蚀的越明显
在这里插入图片描述

更多参数调整测试可以自己多动手试试

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/25883.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最佳路径优先搜索算法

本来想直接写A* 的,不过看完最佳路径优先搜索算法后觉得还是要先理解一下这个算法后才能更好的理解A* 算法,所以把这篇文章放到A* 前面。 基本概念 最佳优先搜索算法(Best-first-searching)是一种启发式搜索算法(Heu…

Python实现GA遗传算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 遗传算法(Genetic Algorithm,GA)最早是由美国的 John holland于20世…

Docker从零到掌握(详解)

目录 1.初识Docker 1.1 为什么使用docker 1.2 Docker技术 1.3.安装Docker 1.4.Docker架构 1.5.配置Docker镜像加速器 2.Docker常用命令 2.1.Docker服务相关的命令 2.2.Docker镜像相关的命令 2.3.Docker容器相关的命令 3. 容器的数据卷 3.1.数据卷的概念和作用 3.2…

Idea添加mybatis的mapper文件模版

针对Java开发人员,各种框架的配置模版的确是需要随时保留一份,在使用的时候,方便复制粘贴,但是也依然不方便,我们可以给开发工具(IDE)中添加配置模版,这里我介绍下使用idea开发工具&…

Python 中的机器学习简介:多项式回归

一、说明 多项式回归可以识别自变量和因变量之间的非线性关系。本文是关于回归、梯度下降和 MSE 系列文章的第三篇。前面的文章介绍了简单线性回归、回归的正态方程和多元线性回归。 二、多项式回归 多项式回归用于最适合曲线拟合的复杂数据。它可以被视为多元线性回归的子集。…

uniapp返回

// 监听返回事件onNavigationBarButtonTap() {uni.showModal({title: 提示,content: 确定要返回吗?,success: (res) > {if (res.confirm) {uni.navigateBack({delta: 2})}}})},

Opencv-C++笔记 (16) : 几何变换 (图像的翻转(镜像),平移,旋转,仿射,透视变换)

文章目录 一、图像平移二、图像旋转2.1 求旋转矩阵2.2 求旋转后图像的尺寸2.3手工实现图像旋转2.4 opencv函数实现图像旋转 三、图像翻转3.1左右翻转3.2、上下翻转3.3 上下颠倒,左右相反 4、错切变换4.1 实现错切变换 5、仿射变换5.1 求解仿射变换5.2 OpenCV实现仿射…

力扣 -- 139. 单词拆分

一、题目 题目链接:139. 单词拆分 - 力扣(LeetCode) 二、解题步骤 下面是用动态规划的思想解决这道题的过程,相信各位小伙伴都能看懂并且掌握这道经典的动规题目滴。 三、参考代码 class Solution { public:bool wordBreak(str…

基于Java的新闻全文搜索引擎的设计与实现

中文摘要 本文以学术研究为目的,针对新闻行业迫切需求和全文搜索引擎技术的优越性,设计并实现了一个针对新闻领域的全文搜索引擎。该搜索引擎通过Scrapy网络爬虫工具获取新闻页面,将新闻内容存储在分布式存储系统HBase中,并利用倒…

建筑行业如果应用了数字孪生技术能有什么改变?

数字孪生是一种将现实世界与数字世界相结合的先进技术,它在建筑行业中正发挥着越来越重要的作用。通过数字孪生技术,建筑行业可以实现从设计、施工到运营的全生命周期数字化管理,带来了许多优势和机遇。 ① 建筑设计阶段的应用 数字孪生能够…

Unity Shader:闪烁

还是一样的分为UI闪烁和物体闪烁,其中具体可分为:UI闪烁、物体闪烁与半透明闪烁 1,UI闪烁 对于UI 还是一样的,改写UI本身的shader: Shader "UI/YydUIShanShder" {Properties{[PerRendererData] _MainTex(…

Spring Boot如何整合mybatis

文章目录 1. 相关配置和代码2. 整合原理2.1 springboot自动配置2.2 MybatisAutoConfiguration2.3 debug过程2.3.1 AutoConfiguredMapperScannerRegistrar2.3.2 MapperScannerConfigurer2.3.4 创建MapperFactoryBean2.3.5 创建MybatisAutoConfiguration2.3.6 创建sqlSessionFact…

怎么合并多个视频?简单视频合并方法分享

合并多个视频可以将它们组合成一个更长的视频,这对于需要播放多个短视频的情况非常有用。此外,合并视频还可以使视频编辑过程更加高效,因为不必将多个独立的视频文件分别处理。最后,合并视频可以减少文件数量,从而使整…

用html+javascript打造公文一键排版系统13:增加半角字符和全角字符的相互转换功能

一、实践发现了bug和不足 今天用了公文一键排版系统对几个PDF文件格式的材料进行文字识别后再重新排版,处理效果还是相当不错的,节约了不少的时间。 但是也发现了三个需要改进的地方: (一)发现了两个bug:…

【JVM】 垃圾回收篇——自问自答(1)

Q什么是垃圾: 运行程序中,没用任何指针指向的对象。 Q为什么需要垃圾回收? 内存只分配,不整理回收,迟早会被消耗完。 内存碎片的整理,为新对象腾出空间 没有GC程序无法正常进行。 Q 哪些区域有GC&#…

Java电子招投标采购系统源码-适合于招标代理、政府采购、企业采购、等业务的企业tbms

​ 功能描述 1、门户管理:所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含:招标公告、非招标公告、系统通知、政策法规。 2、立项管理:企业用户可对需要采购的项目进行立项申请,并提交审批,查…

多线程案例(3)-定时器

文章目录 多线程案例三三、 定时器 大家好,我是晓星航。今天为大家带来的是 多线程案例三 相关的讲解!😀 多线程案例三 三、 定时器 定时器是什么 定时器也是软件开发中的一个重要组件. 类似于一个 “闹钟”. 达到一个设定的时间之后, 就…

视频太大怎么压缩变小?三招教会你压缩视频

如果视频文件太大,不仅占用空间,还不方便传输,这时候就需要我们对视频进行压缩处理,目前市面上有多种视频压缩软件,想要压缩率高,又保留原视频的画质,可以参考以下的几个方法。 一、嗨格式压缩大…

K8s中的Controller

Controller的作用 (1)确保预期的pod副本数量 (2)无状态应用部署 (3)有状态应用部署 (4)确保所有的node运行同一个pod,一次性任务和定时任务 1.无状态和有状态 无状态&…

python excel 操作

excel文件内容如下: 一、xlrd 读Excel 操作 1、打开Excel文件读取数据 filexlrd.open_workbook(filename)#文件名以及路径,如果路径或者文件名有中文给前面加一个 r 2、常用函数 (1)获取一个sheet工作表 table file.sheets(…