go微服务框架go-micro深度学习(一) 整体架构介绍

  产品嘴里的一个小项目,从立项到开发上线,随着时间和需求的不断激增,会越来越复杂,变成一个大项目,如果前期项目架构没设计的不好,代码会越来越臃肿,难以维护,后期的每次产品迭代上线都会牵一发而动全身。项目微服务化,松耦合模块间的关系,是一个很好的选择,随然增加了维护成本,但是还是很值得的。 

 

     微服务化项目除了稳定性我个人还比较关心的几个问题:

     一: 服务间数据传输的效率和安全性。

     二: 服务的动态扩充,也就是服务的注册和发现,服务集群化。

     三: 微服务功能的可订制化,因为并不是所有的功能都会很符合你的需求,难免需要根据自己的需要二次开发一些功能。

 

     go-micro是go语言下的一个很好的rpc微服务框架,功能很完善,而且我关心的几个问题也解决的很好:

     一:服务间传输格式为protobuf,效率上没的说,非常的快,也很安全。

     二:go-micro的服务注册和发现是多种多样的。我个人比较喜欢etcdv3的服务服务发现和注册。

     三:主要的功能都有相应的接口,只要实现相应的接口,就可以根据自己的需要订制插件。

     

     业余时间把go-micro的源码系统地读了一遍,越读越感觉这个框架写的好,从中也学到了很多东西。就想整理一系列的帖子,把学习go-micro的心得和大家分享。

通信流程

     go-micro的通信流程大至如下

 

    Server监听客户端的调用,和Brocker推送过来的信息进行处理。并且Server端需要向Register注册自己的存在或消亡,这样Client才能知道自己的状态。

    Register服务的注册的发现。

    Client端从Register中得到Server的信息,然后每次调用都根据算法选择一个的Server进行通信,当然通信是要经过编码/解码,选择传输协议等一系列过程的。

    如果有需要通知所有的Server端可以使用Brocker进行信息的推送。

    Brocker 信息队列进行信息的接收和发布。

 

     go-micro之所以可以高度订制和他的框架结构是分不开的,go-micro由8个关键的interface组成,每一个interface都可以根据自己的需求重新实现,这8个主要的inteface也构成了go-micro的框架结构。 

 

    这些接口go-micir都有他自己默认的实现方式,还有一个go-plugins是对这些接口实现的可替换项。你也可以根据需求实现自己的插件。

 

 

   这篇帖子主要是给大家介绍go-micro的主体结构和这些接口的功能,具体细节以后的文章我们再慢慢说:

   Transort

    服务之间通信的接口。也就是服务发送和接收的最终实现方式,是由这些接口定制的。

   源码:

复制代码
type Socket interface {Recv(*Message) errorSend(*Message) errorClose() error
}type Client interface {Socket
}type Listener interface {Addr() stringClose() errorAccept(func(Socket)) error
}type Transport interface {Dial(addr string, opts ...DialOption) (Client, error)Listen(addr string, opts ...ListenOption) (Listener, error)String() string
}
复制代码

    Transport 的Listen方法是一般是Server端进行调用的,他监听一个端口,等待客户端调用。

    Transport 的Dial就是客户端进行连接服务的方法。他返回一个Client接口,这个接口返回一个Client接口,这个Client嵌入了Socket接口,这个接口的方法就是具体发送和接收通信的信息。

    http传输是go-micro默认的同步通信机制。当然还有很多其他的插件:grpc,nats,tcp,udp,rabbitmq,nats,都是目前已经实现了的方式。在go-plugins里你都可以找到。

Codec

     有了传输方式,下面要解决的就是传输编码和解码问题,go-micro有很多种编码解码方式,默认的实现方式是protobuf,当然也有其他的实现方式,json、protobuf、jsonrpc、mercury等等。

源码

复制代码
type Codec interface {ReadHeader(*Message, MessageType) errorReadBody(interface{}) errorWrite(*Message, interface{}) errorClose() errorString() string
}type Message struct {Id     uint64Type   MessageTypeTarget stringMethod stringError  stringHeader map[string]string
}
复制代码

     Codec接口的Write方法就是编码过程,两个Read是解码过程。

Registry

     服务的注册和发现,目前实现的consul,mdns, etcd,etcdv3,zookeeper,kubernetes.等等,

复制代码
type Registry interface {Register(*Service, ...RegisterOption) errorDeregister(*Service) errorGetService(string) ([]*Service, error)ListServices() ([]*Service, error)Watch(...WatchOption) (Watcher, error)String() stringOptions() Options
}
复制代码

     简单来说,就是Service 进行Register,来进行注册,Client 使用watch方法进行监控,当有服务加入或者删除时这个方法会被触发,以提醒客户端更新Service信息。

     默认的是服务注册和发现是consul,但是个人不推荐使用,因为你不能直接使用consul集群

     

     我个人比较喜欢etcdv3集群。大家可以根据自己的喜好选择。

 

Selector

    以Registry为基础,Selector 是客户端级别的负载均衡,当有客户端向服务发送请求时, selector根据不同的算法从Registery中的主机列表,得到可用的Service节点,进行通信。目前实现的有循环算法和随机算法,默认的是随机算法。

    源码:

复制代码
type Selector interface {Init(opts ...Option) errorOptions() Options// Select returns a function which should return the next nodeSelect(service string, opts ...SelectOption) (Next, error)// Mark sets the success/error against a nodeMark(service string, node *registry.Node, err error)// Reset returns state back to zero for a serviceReset(service string)// Close renders the selector unusable
    Close() error// Name of the selectorString() string
}
复制代码

     默认的是实现是本地缓存,当前实现的有blacklist,label,named等方式。

 Broker

     Broker是消息发布和订阅的接口。很简单的一个例子,因为服务的节点是不固定的,如果有需要修改所有服务行为的需求,可以使服务订阅某个主题,当有信息发布时,所有的监听服务都会收到信息,根据你的需要做相应的行为。

源码

复制代码
type Broker interface {Options() OptionsAddress() stringConnect() errorDisconnect() errorInit(...Option) errorPublish(string, *Message, ...PublishOption) errorSubscribe(string, Handler, ...SubscribeOption) (Subscriber, error)String() string
}
复制代码

     Broker默认的实现方式是http方式,但是这种方式不要在生产环境用。go-plugins里有很多成熟的消息队列实现方式,有kafka、nsq、rabbitmq、redis,等等。

 Client

    Client是请求服务的接口,他封装Transport和Codec进行rpc调用,也封装了Brocker进行信息的发布。

源码

复制代码
type Client interface {Init(...Option) errorOptions() OptionsNewMessage(topic string, msg interface{}, opts ...MessageOption) MessageNewRequest(service, method string, req interface{}, reqOpts ...RequestOption) RequestCall(ctx context.Context, req Request, rsp interface{}, opts ...CallOption) errorStream(ctx context.Context, req Request, opts ...CallOption) (Stream, error)Publish(ctx context.Context, msg Message, opts ...PublishOption) errorString() string
}
复制代码

     当然他也支持双工通信 Stream 这些具体的实现方式和使用方式,以后会详细解说。

     默认的是rpc实现方式,他还有grpc和http方式,在go-plugins里可以找到

Server

     Server看名字大家也知道是做什么的了。监听等待rpc请求。监听broker的订阅信息,等待信息队列的推送等。

源码 

复制代码
type Server interface {Options() OptionsInit(...Option) errorHandle(Handler) errorNewHandler(interface{}, ...HandlerOption) HandlerNewSubscriber(string, interface{}, ...SubscriberOption) SubscriberSubscribe(Subscriber) errorRegister() errorDeregister() errorStart() errorStop() errorString() string
}
复制代码

     默认的是rpc实现方式,他还有grpc和http方式,在go-plugins里可以找到

 

Service

     Service是Client和Server的封装,他包含了一系列的方法使用初始值去初始化Service和Client,使我们可以很简单的创建一个rpc服务。

源码:

复制代码
type Service interface {Init(...Option)Options() OptionsClient() client.ClientServer() server.ServerRun() errorString() string
}
复制代码

     具体的细节,我以后的帖子会给大家一一展开,希望这篇帖子,可以帮助你对go-micro的整体框架有个初步了解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/253595.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(转载)项目实战工具类(一):PhoneUtil(手机信息相关)

项目实战工具类(一):PhoneUtil(手机信息相关) 可以使用的功能: 1、获取手机系统版本号 2、获取手机型号 3、获取手机宽度 4、获取手机高度 5、获取手机imei串号 ,GSM手机的 IMEI 和 CDMA手机的 MEID. 6、…

HDR 成像技术学习(三)—— LOFIC

HDR 成像技术学习(一) HDR 成像技术学习(二) 我们拍摄的照片来自传感器上的像素,它们将光处理为电信号,组合起来输出画面。当捕捉对象亮度过强,大量电荷挤在单个像素内,生成的图像就会过曝。 LOFIC(Lateral Overflow Integration Capacitor,横向溢出集合电容…

097实战 关于ETL的几种运行方式

一:代码部分 1.新建maven项目 2.添加需要的java代码   3.书写mapper类 4.书写runner类 二:运行方式 1.本地运行 2.集群运行 3.本地提交集群运行 三:本地运行方式 1.解压hadoop到本地 2.修改配置文件HADOOP_HOME 3.解压common的压缩包 4.将压…

使用pssh进行并行批量操作

假如同时给上千台服务器执行一个命令,拷贝一个文件,杀一个进程等,有什么简化运维管理的工具呢?在小型使用中我都是使用for循 环,数量巨大,一方面不确定操作是否成功,一方面for循环语句性能不好估计且是不是同步并行执行.,这类工具比如 pdsh,mussh&#…

图像清晰度评价函数

概述 图像清晰度是用来指导调焦机构找到正焦位置的评价函数。理想的清晰度评价曲线如下图所示,其中P 是评价函数最大值的位置,其对应正焦位置,P1 和P2 为正焦位置焦前和焦后采集到图像的清晰度评价结果。 为了指导调焦机构找到正焦位置,清晰度曲线须具有以下特点: 单…

Linux下读写芯片的I2C寄存器

Linux下读写芯片的I2C寄存器 2012-01-10 11:40:18 标签:Linux 寄存器 驱动 读写 I2C 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 、作者信息和本声明。否则将追究法律责任。http://ticktick.blog.51cto.com/823160/76096…

列表和表格---学习笔记02

第7章 列表和表格 7.1 有序列表<ol type"A"><li>这里是第1个li</li><li>这里是第2个li</li><li>这里是第3个li</li></ol> ol属性&#xff1a;type : 数字(1),大小写字母(A,a),大小写罗马数字(I,i)start: "起始…

CMOS图像传感器 —— ISOCELL

最近,外媒曝光了三星最新的CIS传感器路线图,路线图显示,三星在2亿像素之外已经规划2025年推出576MP像素的传感器,也就是5亿7千6百万像素。 若5.76亿像素的传感器推出,意味着手机传感器可媲美中高端单反水平了。三星没有提及这个5.76亿像素的传感器是怎样实现的。因…

YUV图像

YUV420P&#xff0c;Y&#xff0c;U&#xff0c;V三个分量都是平面格式&#xff0c;分为 I420 和 YV12 。 I420 格式和 YV12 格式的不同处在U平面和V平面的位置不同。在I420格式中&#xff0c;U平面紧跟在Y平面之后&#xff0c;然后才是V平面&#xff08;即&#xff1a;YUV&…

色调映射(Tone Mapping)

一、概述 虽然HDR 图像有较大的动态范围,能更细致地反映真实场景,但他的缺点也很明显。一是同尺寸的数据比低动态范围图像大,需要更大的存储空间与传输带宽。二是难以输出,目前大多数显示器、打印机等图形输出设备的动态范围要比普通的高动态范围图像小得多。。因此,色调映…

YUV格式详解

分类&#xff1a; H.264 MPEG TV 2008-05-14 09:24 16181人阅读 评论(21) 收藏 举报 YUV是指亮度参量和色度参量分开表示的像素格式&#xff0c;而这样分开的好处就是不但可以避免相互干扰&#xff0c;还可以降低色度的采样率而不会对图像质量影响太大。YUV是一个比较笼统地说…

KVM安装、镜像创建(一)

环境准备 VMware Workstation Pro启动虚拟化 查看启动的系统是否支持vmx或svm grep -E (vmx|svm) /proc/cpuinfo 备注&#xff1a;操作系统centos 7 KVM安装 1、yum查看kvm安装包 yum list |grep kvm 2、安装 yum install -y qemu-kvm qemu-kvm-tools libvirt3、启动libvirtd s…

Sensor 结构——前照、背照、堆栈

优异的工艺和技术可以使得即便不使用更新结构的CMOS,同样拥有更好的量子效率、固有热噪声、增益、满阱电荷、宽容度、灵敏度等关键型指标。在相同技术和工艺下,底大一级的确压死人(全画幅和aps-c)。人类的进步就是在不断发现问题,解决问题。背照式以及堆栈式CMOS的出现,也…

可测性设计技术

传统的设计过程和测试过程是分开的&#xff0c;而且测试往往只在设计阶段的后期才被考虑。近年来&#xff0c;测试越来越早地被考虑并出现在设计过程中&#xff0c;被称为“可测性设计”。可测性设计的主要思路就是在设计之初就考虑关于测试方面的设计&#xff0c;并在设计阶段…

pthread_cond_wait

1. 首先pthread_cond_wait 的定义是这样的 The pthread_cond_wait() andpthread_cond_timedwait() functions are used to block on a condition variable. They are called withmutex locked by the calling thread or undefined behaviour will result. These functions ato…

HDU 1525 Euclid's Game

题目大意&#xff1a; 题目给出了两个正数a.b 每次操作&#xff0c;大的数减掉小的数的整数倍。一个数变为0 的时候结束。 谁先先把其中一个数减为0的获胜。问谁可以赢。Stan是先手。 题目思路&#xff1a; 无论a,b的值为多少&#xff0c;局面&#xff1a;[a%b&#xff0c;b] 一…

SRAM BIST技术学习

MBIST 方法是目前大容量存储器测试的主流技术&#xff0c;该技术利用芯片内部专门设计的BIST 电路进行自动化测试&#xff0c;能够对嵌入式存储器这种具有复杂电路结构的嵌入式模块进行全面的测试。MBIST 电路将产生测试向量的电路模块以及检测测试结果的比较模块都置于芯片的内…

【Zigbee技术入门教程-02】一图读懂ZStack协议栈的核心思想与工作机理

【Zigbee技术入门教程-02】一图读懂ZStack协议栈的核心思想与工作机理 广东职业技术学院 欧浩源 Z-Stack协议栈是一个基于任务轮询方式的操作系统&#xff0c;其任务调度和资源分配由操作系统抽象层OSAL管理着。 你可以理解为&#xff1a;Z-Stack协议栈 OSAL操作系统 CC25…

Servlet第二篇【Servlet调用图、Servlet细节、ServletConfig、ServletContext】

Servlet的调用图 前面我们已经学过了Servlet的生命周期了&#xff0c;我们根据Servlet的生命周期画出Servlet的调用图加深理解 Servlet的细节 一个已经注册的Servlet可以被多次映射 同一个Servlet可以被映射到多个URL上。 <servlet><servlet-name>Demo1</servle…

自动对焦方法学习

实现自动对焦的方法有很多种,可以根据不同的工作原理,将自动对焦技术分成不同种类。 按照系统是否自带信号发射系统,可以分为主动式与被动式两种类型。 主动式对焦方法是由成像系统中的发射装置发出信号,然后再由接收装置接收从被摄景物所反射回来的反馈信号并利用通过计算…