CMOS Sensor的调试分享

目前,包括移动设备在内的很多多媒体设备上都使用了摄像头,而且还在以很快的速度更新换代。目前使用的摄像头分为两种CCD(Charge Couple Device电荷偶合器件)CMOS(Complementary Metal Oxide Semiconductor互补金属氧化物半导体)。这两种各有优劣:目前CCD主要使用高质量的DC、DV和高档手机上,其图像质量较好,但是整个驱动模组相对比较复杂,而且目前只有曰本一些企业掌握其生产技术,对于选用的厂商来说成本会比较高昂而且一些设备对与图像质量没有很苛刻的要求,对体积要求会高一些;而CMOS正好满足这样的要求,CMOS模组则比较简单,目前很多厂商已经把驱动和信号处理的ISP(Image Signal Processor)集成在模组内部,这样体积就更小,而且其生产技术要求相对简单、工艺比较成熟、成本较低、外围电路简单、图像质量也可以满足一般的要求,所以在嵌入式市场中占有很大份额目前一些高端的CMOS Sensor的质量已经可以和CCD 的质量相媲美。

  我这里要介绍的就是CMOS摄像头的一些调试经验。

  首先,要认识CMOS摄像头的结构。我们通常拿到的是集成封装好的模组,一般由三个部分组成:镜头、感应器和图像信号处理器构成。一般情况下,集成好的模组我们只看到外面的镜头、接口和封装壳,这种一般是固定焦距的。有些厂商只提供芯片,需要自己安装镜头,镜头要选择合适大小的镜头,如果没有夜视要求的话,最好选择带有红外滤光的镜头,因为一般的sensor都能感应到红外光线,如果不滤掉,会对图像色彩产生影响,另外要注意在PCB设计时要保证镜头的聚焦中心点要设计在sensor的感光矩阵中心上。除了这点 CMOS Sensor硬件上就和普通的IC差不多了,注意不要弄脏或者磨花表面的玻璃。

  其次,CMOS模组输出信号可以是模拟信号输出和数字信号输出模拟信号一般是电视信号输出,PAL和NTSC都有,直接连到电视看的;数字输出一般会有并行和串行两种形式,由于图像尺寸大小不同,所要传输的数据不同,数据的频率差异也很大,但是串行接口的pixel clock频率都要比并行方式高(同样的数据量下这不难理解),较高的频率对外围电路也有较高的要求;并行方式的频率就会相对低很多,但是它需要更多引脚连线;所以这应该是各有裨益。(笔者测试使用的系统是8bit并行接口)另外输出信号的格式有很多种,视频输出的主要格式有:RGB、YUV、BAYER PATTERN等。一般CMOS Sensor模组会集成ISP在模组内部,其输出格式可以选择,这样可以根据自己使用的芯片的接口做出较适合自己系统的选择。其中,部分sensor为了降低成本或者技术问题,sensor部分不带ISP或者功能很简单,输出的是BAYER PATTERN这种格式是sensor的原始图像,因此需要后期做处理,这需要有专门的图像处理器或者连接的通用处理器有较强的运算能力(需要运行图像处理算法)。不管sensor模组使用何种数据格式,一般都有三个同步信号输出:帧同步/场同步(Frame synchronizing)、行同步(Horizontal synchronizing)和像素时钟(pixel clock)。要保证信号的有效状态与自己系统一致,如都是场同步上升(下降)沿触发、行同步高(低)电平有效等。

  通过以上介绍,我们就可以根据自己的使用的系统选择适合的sensor模组。要选择接口对应(如果并行接口,sensor模组输出数据bit位多于接受端,可以用丢弃低位的数据的方法连接)、数据格式可以接受或处理、pixel clock没有超过可接受的最高频率(有的是可调的,但帧率会受影响)、场同步和行同步可以调节到一致的sensor模组,这样才可以保证可以使用。保证这些条件的正确性下,还要符合它的硬件电路要求,首要的是确定它的电源、时钟、RESET等信号是否符合芯片要求,其次要看所有的引脚是否连接正确,这样保证外围的电路没有错误情况下才可能正确显示图像。各个厂商生产的产品各不相同,一些厂商的sensor模组在默认状态下就可以输出图像,而有些厂商的sensor模组必须要设置一些寄存器以后才可以得到图像。区别是否可以直接输出图像,可以通过检测sensor 的输出脚,如果三个同步信号都有,数据线上也有数据,那一般就会有默认图像输出,另外也可以跟厂商联系获得有关信息。如果没有默认输出就需要设置寄存器了,一般都是通过两线串行方式(IIC总线使用频率很高)设置寄存器。寄存器设置是整个调试过程中最复杂的过程,当然要设置寄存器要先保证主芯片跟 sensor模组之间通信是正确无误的,然后才是具体设置值的问题。保证通信无误,简单的方法就是读写一致(排除部分动态变化的寄存器),就是说保证能够每次写进去的数据都能正确读出来。寄存器设置方面,一般都会有很多寄存器,其中一些是关键的:例如软件RESET、工作状态、输出大小、输出格式、输出信号有效性、像素频率等,另外一些对细调图像质量很有用处的寄存器暂时可以不管,还有部分寄存器比如自动暴光、自动白平衡这些建议都选择auto,这些功能对图像质量影响很大,一般模组集成了ISP的都会有这个功能。当然不管是默认图像还是设置以后输出的,都需要细调,这时如果有可能,可以联系sensor 模组厂商,请他们给出推荐配置或者做一些技术支持,因为一般sensor内部都有一些寄存器是不对外公布的,只有厂商的FAE才这些寄存器的定义;自己调节图像时,可以从对比度、亮度、饱和度、锐化程度、Gamma校正、消除flicker等方面进行调节。如果sensor没有集成ISP的话,如前面提到的它的输出是BAYER PATTERN,这种格式就是直接将感应到的数据传输过来,需要处理器端进行数据转换,同时还需要做白平衡、暴光控制,另外还要进行上面提到的对比度、亮度、饱和度等等的改进,这些改进要想得到比较好的图像质量,算法会比较复杂,不仅需要处理器有较强的处理能力,也对调试者有一定的要求,但是这样的sensor一般会比较便宜,所以根据自己的情况做选择比较好;不过目前有厂商设计做图像处理的芯片,其实这就是将ISP拿出来单独作为一颗芯片了,它的调试就跟sensor模组差不多了,只是大一些而已。

  调试过程中,我们还要注意一些问题,例如YUV格式输出时中YUV的顺序、BAYER PATTERN中第一行数据的格式、sensor模组输出图像的大小、显示图像的大小等。一般YUV顺序不对图像是可以看到的,只是色彩和亮度转换了;BAYER PATTERN第一行数据格式错了,也就是RGB三种颜色乱了,都是可以看到图像的;图像输出大小则比较重要,因为如果设置输入的图像大小大于实际输出的大小,处理器可能会因为数据不够一场而无法显示,如果小于实际大小则只能输出图像的一部分,但是还是可以显示的,当然这也可以在显示面积不够时做成局部放大的效果。

  图像出来以后,就需要检验一些模组的质量,个人觉得可以从下面几个方面观察:帧率、有无坏点、噪声、暗光下的图像、白平衡、色彩还原能力、暴光、边缘等。现在一般的sensor厂商的30万像素的产品都可以VGA(640*480)30帧,2M像素做到 SVGA(800*600)30帧的帧率,一般应用已经足够,拖影现象也控制得比较好;坏点是比较严重的问题,一般是sensor硬件上有问题,而且它自身的修复算法没有能够修复的,这样对图像会有很大的影响,一般打开sensor工作5分钟就还没有的话,基本上就可以放心了,要指出的是有的时候在一些物体的边缘会出现“坏点”这是sensor算法的问题,一般移动一下物体或者模组就没有了;噪声问题是CMOS Sensor无法躲避的问题,由于感光部分结构跟CCD的差异,注定了同样大小的感光面积下CMOS Sensor图像噪声要比CCD严重,但是各个厂商技术的差异还是会噪声控制上也会有所不同,这时只要给个深色的背景就会看到了,同样CMOS Sensor在低光条件下噪声问题也比较突出,当然可以使用一些技术加以改进;白平衡是最基础的问题,但是白平衡算法好坏也会影响sensor的表现,一些sensor遇到大片某个单色的画面时可以明显看到背景图像颜色改变,这就是算法不好的原因;色彩还原可以照在标准色板上,看与原来的区别就可以看出sensor色彩还原能力了,也有一些sensor会某些颜色过了;若没有色板也可以用色彩明亮丰富的纸来测试,关键是看sensor能否真实表现这些色彩;暴光控制现在一般都的模组都集成了,对着暗处和强光看它是否能够调节到比较理想的状态,一般不会有问题,但是也有例外,笔者曾经碰到一颗sensor在强光照射下启动时没有办法正确暴光,画面很暗;边缘好坏是一个sensor细节表现能力证明,一些 sensor在边缘部分会有锯齿或者就是很模糊不清,这都是细节表现的问题;如果整个画面比较灰,那就是sensor对比度出了问题。

  调试 sensor是一件非常有趣的事情,很多时候它跟一般的IC没有太大区别,其实上我们也是把它当成一般IC来调试的,但是收获却很多。当然,调试的时候可能会遇到很多问题,有些可能会比较棘手,问题的解决也需要很多的经验,但是办法总比问题多,问题的解决就是经验累积的过程、成长的过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/253029.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

利用反射修改final数据域

当final修饰一个数据域时,意义是声明该数据域是最终的,不可修改的。常见的使用场景就是eclipse自动生成的serialVersionUID一般都是final的。 另外还可以构造线程安全(thread safe)的immutable类,比如String&#xff0…

mysql简单创建数据库权限(待修改备注)

CREATE DATABASE web DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci;一、环境:CentOS 6.8mysql 5.6二、背景给外包的工作人员提供我司某台服务器的 mysql 中某个数据库的访问权限。之所以要做限制,是防止他们对我司其他的数据库非法进行操作。三、…

Centos 能ping通域名和公网ip但是网站不能够打开,服务器拒绝了请求。打开80端口解决。...

博客搬迁,给你带来的不便,敬请谅解! http://www.suanliutudousi.com/2017/10/29/centos-%E8%83%BDping%E9%80%9A%E5%9F%9F%E5%90%8D%E5%92%8C%E5%85%AC%E7%BD%91ip%E4%BD%86%E6%98%AF%E7%BD%91%E7%AB%99%E4%B8%8D%E8%83%BD%E5%A4%9F%E6%89%93…

ISP 图像传感器camera原理

1、Color Filter Array — CFA 随着数码相机、手机的普及,CCD/CMOS 图像传感器近年来得到广泛的关注和应用。 图像传感器一般都采用一定的模式来采集图像数据,常用的有 BGR 模式和 CFA 模式。BGR 模式是一种可直接进行显示和压缩等处理的图像数据模式&am…

51nod 1027 大数乘法

1027 大数乘法基准时间限制&#xff1a;1 秒 空间限制&#xff1a;131072 KB 分值: 0 难度&#xff1a;基础题收藏关注给出2个大整数A,B&#xff0c;计算A*B的结果。 Input第1行&#xff1a;大数A 第2行&#xff1a;大数B (A,B的长度 < 1000&#xff0c;A,B > 0&#xff…

file mmap

do_set_pmd统计参数只会在这里设置&#xff1a; add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);但是这貌似都是处理大页的情况哪&#xff0c;小页呢&#xff1f; alloc_set_pte中有函数&#xff1a;inc_mm_couter_fast(vma->vm_mm, mm_couter_file(page)&…

Linux链接库三(C跟C++之间动态库的相互调用)

http://www.cppblog.com/wolf/articles/74928.html http://www.cppblog.com/wolf/articles/77828.html http://www.jb51.net/article/34990.htm C和C之间库的互相调用 extern "C"的理解&#xff1a; 很多人认为"C"表示的C语言&#xff0c;实际并非如此&…

C#如何开发多语言支持的Winform程序

C# Winform项目多语言实现(支持简/繁/英三种语言)有很多种方案实现多语言&#xff0c;我在这里介绍一种最简单最容易理解的&#xff0c;作为教学材题应该从通俗易懂入手。在写这篇文章之前&#xff0c;本来想用枚举窗体对象成员的方式设置语言&#xff0c;但是找不到源代码了&a…

Alpha 冲刺 (2/10)

Alpha 冲刺 &#xff08;2/10&#xff09; 队名&#xff1a;第三视角 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬&#xff08;组长&#xff09; 过去两天完成了哪些任务&#xff1a; 文字/口头描述&#xff1a; 1、学习qqbot库&#xff1b; 2、实时保存…

Linux学习之第二课时--linux命令格式及命令概述

命令概述 Linux提供了大量的命令&#xff0c;利用它可以有效地完成大量的工作&#xff0c;如磁盘管理&#xff0c;文件存取&#xff0c;目录操作&#xff0c;进程管理&#xff0c;文件权限设定等 Linux命令格式 Linux命令的组成部分&#xff1a;命令字 命令选项参数&#xff…

Linux C语言调用C++动态链接库

Linux C语言调用C动态链接库 标签&#xff1a; C调用C库 2014-03-10 22:56 3744人阅读 评论(0) 收藏 举报 分类&#xff1a; 【Linux应用开发】&#xff08;48&#xff09; 版权声明&#xff1a;本文为博主原创文章&#xff0c;未经博主允许不得转载。 如果你有一个c做的动态…

Android实践 -- 对apk进行系统签名

对apk进行系统签名 签名工具 网盘下载 &#xff0c;需要Android系统的签名的文件platform.x509.pem 和 platform.pk8 这个两个文件在Android源码中的 ./build/target/product/security 目录下 具体的使用方法&#xff1a; java -jar signapk.jar platform.x509.pem platform.…

Java编写基于netty的RPC框架

一 简单概念RPC: ( Remote Procedure Call),远程调用过程,是通过网络调用远程计算机的进程中某个方法,从而获取到想要的数据,过程如同调用本地的方法一样.阻塞IO :当阻塞I/O在调用InputStream.read()方法是阻塞的,一直等到数据到来时才返回,同样ServerSocket.accept()方法时,也…

linux下c和c++互相调用

c调用cpp 创建个目录 创建4个文件 c.c--c文件 cpp.cpp--c文件 cpp.hh--c声明文件 Makefile c.c [javascript] view plaincopy#include "cpp.hh" int main() { cpp_fun(); } cpp.cpp [cpp] view plaincopy#include "cpp.hh" #include <stdi…

Applications Manager Docker监控

Docker 是一个流行的开源容器应用程序&#xff0c;允许您将应用程序、应用程序的内部依赖和关联库打包到一个单元中。Docker 的主要优点在于单台机器上的多个 docker 容器共享同一操作系统内核&#xff0c;这可以帮助提升性能和节省大量内存。监控 docker 容器会很困难&#xf…

find

Linux中find常见用法示例 find path -option [ -print ] [ -exec -ok command ] {} \; find命令的参数&#xff1b; pathname: find命令所查找的目录路径。例如用.来表示当前目录&#xff0c;用/来表示系统根目录。-print&#xff1a; find命令将匹配的文件输出…

PHP将多个文件中的内容合并为新的文件

function test(){$hostdir iconv("utf-8","gbk","C:\Users\原万里\Desktop\日常笔记") ; //iconv()转换编码方式&#xff0c;将UTF-8转换为gbk&#xff0c;若是报错在gbk后加//IGNORE$filesnames scandir($hostdir); …

HTTP Live Streaming直播(iOS直播)技术分析与实现

不经意间发现&#xff0c;大半年没写博客了&#xff0c;自觉汗颜。实则2012后半年&#xff0c;家中的事一样接着一样发生&#xff0c;实在是没有时间。快过年了&#xff0c;总算忙里偷闲&#xff0c;把最近的一些技术成果&#xff0c;总结成了文章&#xff0c;与大家分享。 前些…

中文论文格式【杂】

转自知乎&#xff0c;https://www.zhihu.com/question/23791742/answer/344752056 【纸张】毕业论文一律打印&#xff0c;采取A4纸张&#xff0c;页边距一律采取&#xff1a;上、下2.5cm&#xff0c;左3cm,右1.5cm&#xff0c;行间距取多倍行距(设置值为1.25);字符间距为默认值…

jmeter 非gui 模式跑jmx

D:\study\apache-jmeter-3.0\bin>jmeter -n -t D:\study\apache-jmeter-3.0\基金排行.jmx -l D:\study\apache-jmeter-3.0\result_log\获取基金排行.jtl D:\study\apache-jmeter-3.2\bin>jmeter -n -t D:\study\apache-jmeter-3.2\bin\examples\test\百度新闻首页.jmx -l…