转:org.apache.maven.archiver.MavenArchiver.getManifest错误

eclipse导入新的maven项目时,pom.xml第一行报错:

org.apache.maven.archiver.MavenArchiver.getManifest(org.apache.maven.project.MavenProject, org.apache.maven.archiver.MavenArchiveConfiguration)

解决办法:

1、Help——>Install New SoftWare

2.

https://otto.takari.io/content/sites/m2e.extras/m2eclipse-mavenarchiver/0.17.2/N/LATEST/

3.按照安装提示,一直next,重启eclipse之后,执行maven-update project

转载于:https://www.cnblogs.com/jinloooong/p/9136430.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/250170.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Codeforces Round #524 Div. 2 翻车记

A&#xff1a;签到。room里有一个用for写的&#xff0c;hack了一发1e8 1&#xff0c;结果用了大概600ms跑过去了。惨绝人寰。 #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorith…

[pytorch、学习] - 3.13 丢弃法

参考 3.13 丢弃法 过拟合问题的另一种解决办法是丢弃法。当对隐藏层使用丢弃法时,隐藏单元有一定概率被丢弃。 3.12.1 方法 3.13.2 从零开始实现 import torch import torch.nn as nn import numpy as np import sys sys.path.append("..") import d2lzh_pytorc…

[pytorch、学习] - 4.1 模型构造

参考 4.1 模型构造 让我们回顾以下多重感知机的简洁实现中包含单隐藏层的多重感知机的实现方法。我们首先构造Sequential实例,然后依次添加两个全连接层。其中第一层的输出大小为256,即隐藏层单元个数是256;第二层的输出大小为10,即输出层单元个数是10. 4.1.1 继承Module类来…

springboot---基本模块详解

概述 1.基于Spring框架的“约定优先于配置&#xff08;COC&#xff09;”理念以及最佳实践之路。 2.针对日常企业应用研发各种场景的Spring-boot-starter自动配置依赖模块&#xff0c;且“开箱即用”&#xff08;约定spring-boot-starter- 作为命名前缀&#xff0c;都位于org.…

[pytorch、学习] - 4.2 模型参数的访问、初始化和共享

参考 4.2 模型参数的访问、初始化和共享 在3.3节(线性回归的简洁实现)中,我们通过init模块来初始化模型的参数。我们也介绍了访问模型参数的简单方法。本节将深入讲解如何访问和初始化模型参数,以及如何在多个层之间共享同一份模型参数。 import torch from torch import nn…

IEnumerableT和IQueryableT区分

哎&#xff0c;看了那么多&#xff0c;这个知识点还是得开一个文章 IQueryable和IEnumerable都是延时执行(Deferred Execution)的&#xff0c;而IList是即时执行(Eager Execution) IQueryable和IEnumerable在每次执行时都必须连接数据库读取&#xff0c;而IList读取一次后&…

表的转置 行转列: DECODE(Oracle) 和 CASE WHEN 的异同点

异同点 都可以对表行转列&#xff1b;DECODE功能上和简单Case函数比较类似&#xff0c;不能像Case搜索函数一样&#xff0c;进行更复杂的判断在Case函数中&#xff0c;可以使用BETWEEN, LIKE, IS NULL, IN, EXISTS等等&#xff08;也可以使用NOT IN和NOT EXISTS&#xff0c;但是…

[pytorch、学习] - 4.4 自定义层

参考 4.4 自定义层 深度学习的一个魅力在于神经网络中各式各样的层,例如全连接层和后面章节将要用介绍的卷积层、池化层与循环层。虽然PyTorch提供了大量常用的层,但有时候我们依然希望自定义层。本节将介绍如何使用Module来自定义层,从而可以被重复调用。 4.4.1 不含模型参…

spring-boot注解详解(四)

repository repository跟Service,Compent,Controller这4种注解是没什么本质区别,都是声明作用,取不同的名字只是为了更好区分各自的功能.下图更多的作用是mapper注册到类似于以前mybatis.xml中的mappers里. 也是因为接口没办法在spring.xml中用bean的方式来配置实现类吧(接口…

[pytorch、学习] - 4.5 读取和存储

参考 4.5 读取和存储 到目前为止,我们介绍了如何处理数据以及如何构建、训练和测试深度学习模型。然而在实际中,我们有时需要把训练好的模型部署到很多不同的设备。在这种情况下,我们可以把内存中训练好的模型参数存储在硬盘上供后续读取使用。 4.5.1 读写tensor 我们可以直…

spring-boot注解详解(五)

AutoWired 首先要知道另一个东西&#xff0c;default-autowire&#xff0c;它是在xml文件中进行配置的&#xff0c;可以设置为byName、byType、constructor和autodetect&#xff1b;比如byName&#xff0c;不用显式的在bean中写出依赖的对象&#xff0c;它会自动的匹配其它bea…

什么是p12证书?ios p12证书怎么获取?

.cer是苹果的默认证书&#xff0c;在xcode开发打包可以使用&#xff0c;如果在lbuilder、phonegap、HBuilder、AppCan、APICloud这些跨平台开发工具打包&#xff0c;就需要用到p12文件。 .cer证书仅包含公钥&#xff0c;.p12证书可能既包含公钥也包含私钥&#xff0c;这就是他们…

[pytorch、学习] - 4.6 GPU计算

参考 4.6 GPU计算 到目前为止,我们一直使用CPU进行计算。对复杂的神经网络和大规模数据来说,使用CPU来计算可能不够高效。 在本节中,将要介绍如何使用单块NIVIDA GPU进行计算 4.6.1 计算设备 PyTorch可以指定用来存储和计算的设备,如果用内存的CPU或者显存的GPU。默认情况下…

spring-boot注解详解(六)

Target Target说明了Annotation所修饰的对象范围&#xff1a;Annotation可被用于 packages、types&#xff08;类、接口、枚举、Annotation类型&#xff09;、类型成员&#xff08;方法、构造方法、成员变量、枚举值&#xff09;、方法参数和本地变量&#xff08;如循环变量、…

[pytorch、学习] - 5.1 二维卷积层

参考 5.1 二维卷积层 卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。本章介绍的卷积神经网络均使用最常见的二维卷积层。它有高和宽两个空间维度,常用来处理图像数据。本节中,我们将介绍简单形式的二维卷积层的工作原理。 5.1.1…

[51CTO]给您介绍Windows10各大版本之间区别

给您介绍Windows10各大版本之间区别 随着win10的不断普及和推广&#xff0c;越来越多的朋友想安装win10系统了&#xff0c;但是很多朋友不知道win10哪个版本好用&#xff0c;为了让大家能够更好的选择win10系统版本&#xff0c;下面小编就来告诉你 http://os.51cto.com/art/201…

spring-boot注解详解(七)

Configuration 从Spring3.0&#xff0c;Configuration用于定义配置类&#xff0c;可替换xml配置文件&#xff0c;被注解的类内部包含有一个或多个被Bean注解的方法&#xff0c;这些方法将会被AnnotationConfigApplicationContext或AnnotationConfigWebApplicationContext类进行…

[pytorch、学习] - 5.2 填充和步幅

参考 5.2 填充和步幅 5.2.1 填充 填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素)。图5.2里我们在原输入高和宽的两侧分别添加了值为0的元素,使得输入高和宽从3变成了5,并导致输出高和宽由2增加到4。图5.2中的阴影部分为第一个输出元素及其计算所使用的输入和核数…

springboot----shiro集成

springboot中集成shiro相对简单&#xff0c;只需要两个类&#xff1a;一个是shiroConfig类&#xff0c;一个是CustonRealm类。 ShiroConfig类&#xff1a; 顾名思义就是对shiro的一些配置&#xff0c;相对于之前的xml配置。包括&#xff1a;过滤的文件和权限&#xff0c;密码加…

[pytorch、学习] - 5.3 多输入通道和多输出通道

参考 5.3 多输入通道和多输出通道 前面两节里我们用到的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是h和w(像素),那么它可以表示为一个3 * h * w的多维数组。我们将大小为3…