2021-04-12

  1. 异步传输(Asynchronous Transmission):异步传输模式(Asynchronous Transfer Mode,缩略语为ATM)
    异步传输一般以字符为单位,
    起始位:先发出一个逻辑”0”信号,表示传输字符的开始。
    空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。

异步传输将比特分成小组进行传送,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,
而接收方从不知道它们会在什么时候到达。一个常见的例子是计算机键盘与主机的通信。按下一个字母键、数字键或特殊字符键,就发送一个8比特位的ASCII代码。
键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。

异步传输存在一个潜在的问题,即接收方并不知道数据会在什么时候到达。在它检测到数据并做出响应之前,第一个比特已经过去了。
这就像有人出乎意料地从后面走上来跟你说话,而你没来得及反应过来,漏掉了最前面的几个词。因此,每次异步传输的信息都以一个起始位开头,
它通知接收方数据已经到达了,这就给了接收方响应、接收和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。
按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号,异步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。
最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,
同时需要在8比特位的前面加一个起始位,后面一个停止位。

异步传输的实现比较容易,由于每个信息都加上了“同步”信息,因此计时的漂移不会产生大的积累,但却产生了较多的开销。
在上面的例子,每8个比特要多传送两个比特,总的传输负载就增加25%。对于数据传输量很小的低速设备来说问题不大,
但对于那些数据传输量很大的高速设备来说,25%的负载增值就相当严重了。因此,异步传输常用于低速设备。

  1. 同步传输(Synchronous Transmission):同步传输的比特分组要大得多。它不是独立地发送每个字符,每个字符都有自己的开始位和停止位,
    而是把它们组合起来一起发送。我们将这些组合称为数据帧,或简称为帧。

数据帧的第一部分包含一组同步字符,它是一个独特的比特组合,类似于前面提到的起始位,用于通知接收方一个帧已经到达,
但它同时还能确保接收方的采样速度和比特的到达速度保持一致,使收发双方进入同步。

帧的最后一部分是一个帧结束标记。与同步字符一样,它也是一个独特的比特串,类似于前面提到的停止位,用于表示在下一帧开始之前没有别的即将到达的数据了。

同步传输通常要比异步传输快速得多。接收方不必对每个字符进行开始和停止的操作。一旦检测到帧同步字符,它就在接下来的数据到达时接收它们。
另外,同步传输的开销也比较少。例如,一个典型的帧可能有500字节(即4000比特)的数据,其中可能只包含100比特的开销。
这时,增加的比特位使传输的比特总数增加2.5%,这与异步传输中25 %的增值要小得多。
随着数据帧中实际数据比特位的增加,开销比特所占的百分比将相应地减少。但是,数据比特位越长,缓存数据所需要的缓冲区也越大,这就限制了一个帧的大小。

另外,帧越大,它占据传输媒体的连续时间也越长。在极端的情况下,这将导致其他用户等得太久。

同步传输方式中发送方和接收方的时钟是统一的、字符与字符间的传输是同步无间隔的。

异步传输方式并不要求发送方和接收方的时钟完全一样,字符与字符间的传输是异步的。
简单说
  同步传输就是,数据没有被对方确认收到则调用传输的函数就不返回。

接收时,如果对方没有发送数据,则你的线程就一直等待,直到有数据了才返回,可以继续执行其他指令

异步传输就是,你调用一个函数发送数据,马上返回,你可以继续处理其他事,  接收时,对方的有数据来,你会接收到一个消息,或者你的相关接收函数会被调用。
形象点说
  异步传输: 你传输吧,我去做我的事了,传输完了告诉我一声

同步传输: 你现在传输,我要亲眼看你传输完成,才去做别的事 用于异步通信的连接在OSI(开放系统互连)参考模型的物理层中被定义。

“异步通信”是一种很常用的通信方式。

异步通信在发送字符时,所发送的字符之间的时间间隔可以是任意的。当然,接收端必须时刻做好接收的准备(如果接收端主机的电源都没有加上,那么发送端发送字符就没有意义,因为接收端根本无法接收)。发送端可以在任意时刻开始发送字符,因此必须在每一个字符的开始和结束的地方加上标志,即加上开始位和停止位,以便使接收端能够正确地将每一个字符接收下来。

异步通信的好处是通信设备简单、便宜,但传输效率较低(因为开始位和停止位的开销所占比例较大)。

异步通信也可以是以帧作为发送的单位。接收端必须随时做好接收帧的准备。这时,帧的首部必须设有一些特殊的比特组合,使得接收端能够找出一帧的开始。这也称为帧定界。帧定界还包含确定帧的结束位置。这有两种方法。一种是在帧的尾部设有某种特殊的比特组合来标志帧的结束。或者在帧首部中设有帧长度的字段。需要注意的是,在异步发送帧时,并不是说发送端对帧中的每一个字符都必须加上开始位和停止位后再发送出去,而是说,发送端可以在任意时间发送一个帧,而帧与帧之间的时间间隔也可以是任意的。在一帧中的所有比特是连续发送的。发送端不需要在发送一帧之前和接收端进行协调(不需要先进行比特同步)。

位同步:

要求接收端根据发送端发送数据的起止时间和时钟频率,来校正自己的时间基准和时钟频率,这个过程叫位同步。可见,位同步的目的是使接收端接收的每一位信息都与发送端保持同步。

作者:THISISPAN
来源:CSDN
原文:https://blog.csdn.net/THISISPAN/article/details/7481127
版权声明:本文为博主原创文章,转载请附上博文链接!

同步是指:发送方发出数据后,等接收方发回响应以后才发下一个数据包的通讯方式。

异步是指:发送方发出数据后,不等接收方发回响应,接着发送下个数据包的通讯方式。更加形象一点的解释:

同步:比如我叫你去上课,如果你没有听到,我就在这一只叫你,知道你听到为止

异步:我叫你去上课,然后我就直接去上课了,你或者没听到或者过一会再去上课或者立刻去上课

至于官方的解释就不在多说了,到处都能找到,上边是自己的一点理解,希望会对大家有帮助!

作者:u014180504
来源:CSDN
原文:https://blog.csdn.net/u014180504/article/details/47102643
版权声明:本文为博主原创文章,转载请附上博文链接!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/246276.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[知乎] 开放世界游戏中的大地图背后有哪些实现技术?

今天看到的一篇关于大世界的技术文章,写的太好了,膜拜大佬。各位如果有时间一定要看看 原文:http://gulu-dev.com/post/2014-11-16-open-world#toc_10 一、程序技术篇:算法和架构(Programming Algorithms & Arch…

角色控制器

一、简介 角色控制器(Character Controller)主要用于对第三人称或第一人称游戏主角的控制。 二、基本概念 第三人称游戏中的这些控制器由于无规律可循,所以无法遵守固定的物理规则,例如,让某辆车每小时跑 90 英里,但是它可能会突…

unity声音组件AudioSource的使用

一、AudioSource组件 AudioSource是音频源组件,其作用就是用于播放音频剪辑(AudioClip)资源。组件属性 (1)AudioClip(音频剪辑):指定播放的音频文件。 (2)O…

GPU Gems2 - 2 使用基于GPU几何体裁剪图的地形渲染(Terrain Rendering Using GPU-Based Geometry Clipmaps)

【章节概览】 本章描述了一种通过顶点纹理实现的,基于GPU的几何体裁剪图(Geometry Clipmaps)技术。通过把地形几何体当做一组图像来处理,可以在GPU上执行几乎所有的计算,因此可以减少CPU的负载。且该技术较为容易实现…

协程

协程介绍 协同程序与线程差不多,也就是一条执行序列,拥有自己独立的栈,局部变量和指令指针,同时又与其它协同程序共享全局变量和其它大部分东西。线程与协同程序的主要区别在于,一个具有多线程的程序可以同时运行几个…

球谐光照

一.原理 球谐光照实际上是一种对光照的简化,对于空间上的一点,受到的光照在各个方向上是不同的,也即各向异性,所以空间上一点如果要完全还原光照情况,那就需要记录周围球面上所有方向的光照。注意这里考虑的周围环境往…

overload、override、new解释

重载、重写、覆写,分别指的是overload、override、new。 一、override重写,是在子类中重写父类中的方法,两个函数的函数特征(函数名、参数类型与个数)相同。用于扩展或修改继承的方法、属性、索引器或事件的抽象或虚拟…

图像色调,饱和度,对比度等相关定义

RGB颜色模型 RGB颜色模型也就是我们最常用的三原色,红绿蓝。RGB颜色模型在混色时属于加法混色,RGB中每种颜色数值越高,色彩越明亮。RBG为(0,0,0)时为黑色,RGB为(255,255,255)时为白…

各Rendering Path技术以及其在Unity中的实现

Rendering Path其实指的就是渲染场景中光照的方式。由于场景中的光源可能很多,甚至是动态的光源。所以怎么在速度和效果上达到一个最好的结果确实很困难。以当今的显卡发展为契机,人们才衍生出了这么多的Rendering Path来处理各种光照。 一. 正向渲染Fo…

射线碰撞

Physics.Raycast 光线投射 1.一个静态的发射射线的方法,在场景中投下可与所有碰撞器碰撞的一条光线。 参数解释: origin:射线起始点 direction:射线方向 distance:射线长度 layerMask:只选定Layermask层内的碰撞器,其它层内碰撞器忽略。…

GPU Gems2 - 3 几何体实例化的内幕(Inside Geometry Instancing)

文章部分内容摘自 https://zhuanlan.zhihu.com/p/38411575 【章节概览】 本章讨论了在Direct3D中渲染一个几何体的许多独特实例(Instance)的技术细节问题,对几何体实例(Geometry Instancing)的技术内幕进行了分析。 【…

Unity所有移动方法总结

简介 在Unity3D中,有多种方式可以改变物体的坐标,实现移动的目的,其本质是每帧修改物体的position。 通过Transform组件移动物体 Transform 组件用于描述物体在空间中的状态,它包括 位置(position), 旋转(rotation)和…

GPU Gems2 - 4 分段缓冲(Segment Buffering)

文章参照该文 https://zhuanlan.zhihu.com/p/38411575 【章节概览】 本章介绍了一项可以明显减少一个显示帧中渲染的批次数目的技术——分段缓冲(segment buffering),以及其改进。 【核心要点】 分段缓冲(segment buffering&…

tcp 和 dcp 的几大区别

TCP,Transmission Control Protocol的缩写,即传输控制协议。 DCP,User Data Protocol 的缩写,即用户数据报协议。 顺便提一下ARP,即地址解析协议。 区别: 1、TCP协议是有连接的,开始传输数据之…

GPU Gems2 - 6 用多流来优化资源管理(Optimizing Resource Management with Multistreaming)

本文摘自https://zhuanlan.zhihu.com/p/38411575 【章节概览】 现代实时图形应用程序最困难的问题之一是必须处理庞大的数据。复杂的场景结合多通道的渲染,渲染起来往往会较为昂贵。 首先,多流(Multistreaming)技术由微软在Dire…

unity中世界坐标与局部坐标

本人学生一枚,刚接触unity3D,若有理解得不对的地方,还望各路大神不吝赐教~ unity中的坐标系统包括世界坐标(World Space),屏幕坐标(Screen Space),视口坐标(View Space)以及GUI坐标系统。世界坐标(World Space)场景中添…

四元数(Quaternion)和欧拉角(Eulerangle)

欧拉旋转、四元数、矩阵旋转之间的差异 除了欧拉旋转以外,还有两种表示旋转的方式:矩阵旋转和四元数旋转。接下来我们比较它们的优缺点。 欧拉角 优点:三个角度组成,直观,容易理解。 优点:可以进行从一个方…

Bent Normal

https://blog.csdn.net/BugRunner/article/details/7272902 https://blog.csdn.net/weixin_33719619/article/details/87467892

GameObject数组逐渐消失

GameObject数组逐渐消失 我做了10个物体需要每隔俩秒消失一个。 我是这样做的: 我先梳理出大概我需要怎么做的,第一步先引用预制体然后再创建一个数组最后是代码主体。 在start里先把起始时间设好,然后再看Nos方法time是让他时间自己在加&am…

Unity SRP自定义渲染管线 -- 1.Custom Pipeline

该篇是对Catlike Coding这篇文章的概要总结,本人能力有限,如果有不正确的地方欢迎指正 https://catlikecoding.com/unity/tutorials/scriptable-render-pipeline/custom-pipeline/ 通过这篇文章,你将学习到 Create a pipeline asset and i…