云计算与 OpenStack - 每天5分钟玩转 OpenStack(14)


“云计算” 算是近年来最热的词了。现在 IT 行业见面不说这三个字您都不好意思跟人家打招呼。 对于云计算,学术界有各种定义,大家有兴趣可以百度一下。

CloudMan 这里主要想从技术的角度谈谈对云计算的理解。

基本概念

所有的新事物都不是突然冒出来的,都有前世和今生。 云计算也是IT技术不断发展的产物。 要理解云计算,需要对IT系统架构的发展过程有所认识。 请看下图

IT系统架构的发展到目前为止大致可以分为3个阶段:

  1. 物理机架构
    这一阶段,应用部署和运行在物理机上。 比如企业要上一个ERP系统,如果规模不大,可以找3台物理机,分别部署Web服务器、应用服务器和数据库服务器。 如果规模大一点,各种服务器可以采用集群架构,但每个集群成员也还是直接部署在物理机上。 我见过的客户早期都是这种架构,一套应用一套服务器,通常系统的资源使用率都很低,达到20%的都是好的。

  2. 虚拟化架构
    摩尔定律决定了物理服务器的计算能力越来越强,虚拟化技术的发展大大提高了物理服务器的资源使用率。 这个阶段,物理机上运行若干虚拟机,应用系统直接部署到虚拟机上。 虚拟化的好处还体现在减少了需要管理的物理机数量,同时节省了维护成本。

  3. 云计算架构 虚拟化提高了单台物理机的资源使用率,随着虚拟化技术的应用,IT环境中有越来越多的虚拟机,这时新的需求产生了: 如何对IT环境中的虚拟机进行统一和高效的管理。 有需求就有供给,云计算登上了历史舞台。

计算(CPU/内存)、存储和网络是 IT 系统的三类资源。 通过云计算平台,这三类资源变成了三个池子。 当需要虚机的时候,只需要向平台提供虚机的规格。 平台会快速从三个资源池分配相应的资源,部署出这样一个满足规格的虚机。 虚机的使用者不再需要关心虚机运行在哪里,存储空间从哪里来,IP是如何分配,这些云平台都搞定了。

云平台是一个面向服务的架构,按照提供服务的不同分为 IaaS、PaaS 和 SaaS。 请看下图

IaaS(Infrastructure as a Service)提供的服务是虚拟机。 IaaS 负责管理虚机的生命周期,包括创建、修改、备份、启停、销毁等。 使用者从云平台得到的是一个已经安装好镜像(操作系统+其他预装软件)的虚拟机。 使用者需要关心虚机的类型(OS)和配置(CPU、内存、磁盘),并且自己负责部署上层的中间件和应用。 IaaS 的使用者通常是数据中心的系统管理员。 典型的 IaaS 例子有 AWS、Rackspace、阿里云等

PaaS(Platform as a Service)提供的服务是应用的运行环境和一系列中间件服务(比如数据库、消息队列等)。 使用者只需专注应用的开发,并将自己的应用和数据部署到PaaS环境中。 PaaS负责保证这些服务的可用性和性能。 PaaS的使用者通常是应用的开发人员。 典型的 PaaS 有 Google App Engine、IBM BlueMix 等

SaaS(Software as a Service)提供的是应用服务。 使用者只需要登录并使用应用,无需关心应用使用什么技术实现,也不需要关系应用部署在哪里。 SaaS的使用者通常是应用的最终用户。 典型的 SaaS 有 Google Gmail、Salesforce 等

云计算和 OpenStack

OpenStack is a cloud operating system that controls large pools of compute, storage, and networking resources throughout a datacenter, all managed through a dashboard that gives administrators control while empowering their users to provision resources through a web interface.

以上是官网对 OpenStack 的定义,OpenStack 对数据中心的计算、存储和网络资源进行统一管理。 由此可见,OpenStack 针对的是 IT 基础设施,是 IaaS 这个层次的云操作系统。

下一节我们将正式开始 OpenStack 之旅。



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/243210.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenStack 架构 - 每天5分钟玩转 OpenStack(15)

终于正式进入 OpenStack 部分了。 今天开始,CloudMan 将带着大家一步一步揭开 OpenStack 的神秘面纱。 OpenStack 已经走过了 6 个年头。 每半年会发布一个版本,版本以字母顺序命名。现在已经到第 12 个版本 Liberty(字母 L)。 Op…

部署 DevStack - 每天5分钟玩转 OpenStack(17)

本节按照以下步骤部署 DevStack 实验环境,包括控制节点和计算节点 创建虚拟机 按照物理资源需求创建 devstack-controller 和 devstak-compute 虚拟机 安装操作系统 安装 Ubuntu 14.04,并配置 eth0 的 IP devstack-controller 192.168.104.10 devstak-c…

理解 Keystone 核心概念 - 每天5分钟玩转 OpenStack(18)

作为 OpenStack 的基础支持服务,Keystone 做下面这几件事情: 管理用户及其权限维护 OpenStack Services 的 EndpointAuthentication(认证)和 Authorization(鉴权)学习 Keystone,得理解下面这些概…

C++11 Lambda函数(匿名函数)

C11引入了lambda表达式,使得程序员可以定义匿名函数,该函数是一次性执行的,既方便了编程,又能防止别人的访问。 Lambda表达式的语法通过下图来介绍: Lambda表达式的引入标志,在‘[]’里面可以填入‘’或‘&…

时序约束与分析

时序约束与分析 设计约束所处的环节:约束输入、分析实现结果、设计优化。 设计约束分类 物理约束I/O接口约束(例如引脚分配、电平标准设定等物理属性的约束)、布局约束、布线约束以及配置约束。 时序约束:设计FPGA内部的各种逻辑或走线的延时,反应系统的频率和速度的约束…

通过例子学习 Keystone - 每天5分钟玩转 OpenStack(19)

上一节介绍了 Keystone 的核心概念。本节我们通过“查询可用 image”这个实际操作让大家对这些概念建立更加感性的认识。 User admin 要查看 Project 中的 image 第 1 步 登录 当点击时,OpenStack 内部发生了哪些事情?请看下面 Token 中包含了 User 的 R…

从Linux到Meego

网上看到一个Intel的强写的一篇关于meego的文章,很是受用,一篇好的文章就好比一顿每餐,在这里与大家分享。 从2月份Meego发布后一直在学习,现在把一些学到的内容跟大家共享一下。 首先想说说Meego是什么,Meego首先是…

理解 Glance - 每天5分钟玩转 OpenStack(20)

OpenStack 由 Glance 提供 Image 服务。 理解 Image 要理解 Image Service 先得搞清楚什么是 Image 以及为什么要用 Image? 在传统 IT 环境下,安装一个系统是要么从安装 CD 从头安装,要么用 Ghost 等克隆工具恢复。这两种方式有如下几个问题&…

四选一多路器

四选一多路器 状态转换 d0 11 d1 10 d2 01 d3 00 信号示意图 timescale 1ns/1ns module mux4_1( input [1:0]d1,d2,d3,d0, input [1:0]sel, output[1:0]mux_out ); //*************code***********//reg [1:0] mux_out_reg;always(*)begincase(sel)2b00:mux_out_reg d3;2b0…

了解OPhone平台---OPhone平台架构和主要开发组件

OPhone平台基于Linux和开放手机联盟(OHA)的Android系统,经过中国移动的创新研发,设计出拥有新颖独特的用户操作界面,增强 了浏览器能力和WAP兼容性,优化了多媒体领域的OpenCORE、浏览器领域的WebKit等业内众…

如何使用 OpenStack CLI - 每天5分钟玩转 OpenStack(22)

本节首先讨论 image 删除操作,然后介绍 OpenStack CLI 的使用方法,最后讨如何 Troubleshoot。 Web UI 删除 image admin 登录后,Project -> Compute -> Images在列表中选择格式为 ARI 和 AKI 的 image,点击点击确认删除 …

异步复位的串联T触发器

异步复位的串联T触发器 T触发器的特征方程 Qn1 T Qn ’ T ’ Qn T⊕Qn T触发器的特征表 信号示意图 timescale 1ns/1ns module Tff_2 ( input wire data, clk, rst, output reg q ); //*************code***********//reg m;always(posedge clk or negedge rst)beginif…

Pause/Resume Instance 操作详解 - 每天5分钟玩转 OpenStack(34)

本节通过日志详细分析 Nova Pause/Resume 操作。 有时需要短时间暂停 instance,可以通过 Pause 操作将 instance 的状态保存到宿主机的内存中。当需要恢复的时候,执行 Resume 操作,从内存中读回 instance 的状态,然后继续运行 ins…

Windows® CE 系统中的同步机制

看到篇好文章,呵呵,独乐乐,不如众乐乐 本文转自http://blog.csdn.net/thl789/archive/2006/01/17/582246.aspx ,转载请注明出处 摘要 ... 1 目录 ... 1 一、 WinCE进程 /线程模型概览 ... 1 二、临…

Nova Suspend/Rescue 操作详解 - 每天5分钟玩转 OpenStack(35)

本节我们讨论 Suspend/Resume 和 Rescue/Unrescue 这两组操作。 Suspend/Resume 有时需要长时间暂停 instance,可以通过 Suspend 操作将 instance 的状态保存到宿主机的磁盘上。当需要恢复的时候,执行 Resume 操作,从磁盘读回 instance 的状态…

关于奇偶校验

关于奇偶校验 奇校验(Odd Parity):所有传送的数位(含字符的各数位和校验位)中,“1”的个数为奇数,如: 1 0110,0101 0 0110,0101 偶校验(Even Parity):所有传送的数位&am…

移位运算与乘法

移位运算与乘法 题目描述 已知d为一个8位数,请在每个时钟周期分别输出该数乘1/3/7/8,并输出一个信号通知此时刻输入的d有效(d给出的信号的上升沿表示写入有效) 信号示意图 波形示意图 timescale 1ns/1ns module multi_sel( input [7:0]d …

Snapshot Instance 操作详解 - 每天5分钟玩转 OpenStack(36)

本节我们通过日志详细讨论 instance 的 snapshot 操作。 有时候操作系统损坏得很严重,通过 Rescue 操作无法修复,那么我们就得考虑通过备份恢复了。当然前提是我们之前对instance做过备份。 Nova 备份的操作叫 Snapshot,其工作原理是对 insta…

Rebuild Instance 操作详解 - 每天5分钟玩转 OpenStack(37)

上一节我们讨论了 snapshot,snapshot 的一个重要作用是对 instance 做备份。 如果 instance 损坏了,可以通过 snapshot 恢复,这个恢复的操作就是 Rebuild。 Rebuild 会用 snapshot 替换 instance 当前的镜像文件,同时保持 instanc…

突发传输模式

突发传输模式 突发传输(Burst transmission),一般也称为数据突发,其在通信领域中一般指在短时间内进行相对高带宽的数据传输。 突发传输一般表示的是两个设备之间进行数据传送的一种模式,也可将其称为突发模式下的数据传输。而突发(Burst)是指在同一行中相邻的存储单元…