LangChain 30 ChatGPT LLM将字符串作为输入并返回字符串Chat Model将消息列表作为输入并返回消息

LangChain系列文章

  1. LangChain 实现给动物取名字,
  2. LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字
  3. LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄
  4. LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索Indexes for information retrieve
  5. LangChain 5易速鲜花内部问答系统
  6. LangChain 6根据图片生成推广文案HuggingFace中的image-caption模型
  7. LangChain 7 文本模型TextLangChain和聊天模型ChatLangChain
  8. LangChain 8 模型Model I/O:输入提示、调用模型、解析输出
  9. LangChain 9 模型Model I/O 聊天提示词ChatPromptTemplate, 少量样本提示词FewShotPrompt
  10. LangChain 10思维链Chain of Thought一步一步的思考 think step by step
  11. LangChain 11实现思维树Implementing the Tree of Thoughts in LangChain’s Chain
  12. LangChain 12调用模型HuggingFace中的Llama2和Google Flan t5
  13. LangChain 13输出解析Output Parsers 自动修复解析器
  14. LangChain 14 SequencialChain链接不同的组件
  15. LangChain 15根据问题自动路由Router Chain确定用户的意图
  16. LangChain 16 通过Memory记住历史对话的内容
  17. LangChain 17 LangSmith调试、测试、评估和监视基于任何LLM框架构建的链和智能代理
  18. LangChain 18 LangSmith监控评估Agent并创建对应的数据库
  19. LangChain 19 Agents Reason+Action自定义agent处理OpenAI的计算缺陷
  20. LangChain 20 Agents调用google搜索API搜索市场价格 Reason Action:在语言模型中协同推理和行动
  21. LangChain 21 Agents自问自答与搜索 Self-ask with search
  22. LangChain 22 LangServe用于一键部署LangChain应用程序
  23. LangChain 23 Agents中的Tools用于增强和扩展智能代理agent的功能
  24. LangChain 24 对本地文档的搜索RAG检索增强生成Retrieval-augmented generation
  25. LangChain 25: SQL Agent通过自然语言查询数据库sqlite
  26. LangChain 26: 回调函数callbacks打印prompt verbose调用
  27. LangChain 27 AI Agents角色扮演多轮对话解决问题CAMEL
  28. LangChain 28 BabyAGI编写旧金山的天气预报
  29. LangChain 29 调试Debugging 详细信息verbose
    在这里插入图片描述

1. 动手用LangChain

LangChain提供许多模块,可用于构建语言模型应用程序。模块可以作为简单应用程序中的独立模块使用,并且它们可以组合用于更复杂的用例。组合由LangChain表达语言LangChain Expression Language(LCEL)提供支持,它定义了许多模块实现的统一可运行接口,从而使得能够无缝地链接组件成为可能。

最简单和最常见的链包含三个要素:

  • LLM/Chat Model:语言模型在这里是核心推理引擎。为了使用LangChain,您需要了解不同类型的语言模型以及如何与它们一起工作。
  • Prompt Template提示模板:这提供了对语言模型的指令。这控制着语言模型的输出,因此理解如何构建提示和不同的提示策略至关重要。
  • Output Parser输出解析器:这些将语言模型的原始响应转换为更易处理的格式,使得可以轻松地在下游使用输出。

在本指南中,我们将分别介绍这三个组件,然后讨论如何将它们组合在一起。了解这些概念将为您使用和定制LangChain应用程序奠定良好基础。大多数LangChain应用程序允许您配置模型和/或提示,因此知道如何利用这一点将是一个重要的促进因素。

2. LLM / Chat Model

有两种类型的语言模型:

  • LLM:基础模型将字符串作为输入并返回字符串
  • ChatModel:基础模型将消息列表作为输入并返回消息

字符串很简单,但是消息究竟是什么?基本消息接口由BaseMessage定义,其中有两个必需属性:

  • content:消息的内容。通常是字符串。
  • role:来自BaseMessage的实体。

LangChain提供了几个对象,以便轻松区分不同的角色:

  • HumanMessage:来自人类/用户的BaseMessage。
  • AIMessage:来自AI /助手的BaseMessage。
  • SystemMessage:来自系统的BaseMessage。
  • FunctionMessage / ToolMessage:包含函数或工具调用输出的BaseMessage。

如果没有这些角色中的任何一个听起来合适,还有一个ChatMessage类,您可以在其中手动指定角色。

LangChain提供了一个通用接口,被LLM和ChatModel共享。然而,要最有效地构建给定语言模型的提示,了解它们之间的区别是很有用的。

调用LLM或ChatModel的最简单方法是使用.invoke(),这是LangChain表达语言(LCEL)对象的通用同步调用方法:

  • LLM.invoke:接受一个字符串,返回一个字符串。
  • ChatModel.invoke:接受一个BaseMessage列表,返回一个BaseMessage。

这些方法的输入类型实际上比这更一般化,但为了简单起见,我们可以假设LLMs只接受字符串,而Chat模型只接受消息列表。请查看下面的“深入了解”部分,了解有关模型调用的更多信息。

让我们看看如何处理这些不同类型的模型和这些不同类型的输入。首先,让我们导入一个LLM和一个ChatModel。

from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI#llm = OpenAI()
#chat_model = ChatOpenAI()llm = OpenAI(model_name="gpt-3.5-turbo", temperature=0)
chat_model = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)

LLM和ChatModel对象实际上是配置对象。您可以使用温度等参数对它们进行初始化,并将它们传递给其他地方。

from langchain.schema import HumanMessagetext = "制造彩色袜子的公司取什么好名字呢?"
messages = [HumanMessage(content=text)]response = llm.invoke(text)
print("string >>", response)
# >> Feetful of Funresponse =  chat_model.invoke(messages)
print("message >>", response)
# >> AIMessage(content="Socks O'Color")

输出

[zgpeace@zgpeaces-MacBook-Pro langchain-llm-app (develop ✗)]$ python Basic/chat_msg.py    
string >> 1. 彩虹袜子公司
2. 绚丽袜子制造厂
3. 艳丽袜业有限公司
4. 缤纷袜子制造商
5. 魅力袜业集团
6. 彩绘袜子制造厂
7. 七彩袜子有限公司
8. 色彩世界袜业
9. 炫彩袜子制造商
10. 色彩缤纷袜业公司message >> content='1. 彩虹袜子公司\n2. 绚丽袜子制造厂\n3. 艳丽袜业有限公司\n4. 缤纷袜子制造商\n5. 魅力袜业集团\n6. 彩绘袜子制造厂\n7. 时尚彩袜有限公司\n8. 色彩世界袜业\n9. 炫彩袜子制造商\n10. 梦幻袜子公司'

LLM.invokeChatModel.invoke实际上都支持Union[str, List[BaseMessage], PromptValue]作为输入。PromptValue是一个定义了自己的返回输入的自定义逻辑的对象,可以将其输入作为字符串或消息。LLMs有逻辑将这些中的任何一个强制转换为字符串,而ChatModels有逻辑将这些中的任何一个强制转换为消息。LLM和ChatModel接受相同的输入意味着你可以在大多数链中直接交换它们,而不会破坏任何东西,尽管重要的是要考虑输入是如何被强制转换以及这可能会影响模型性能。要深入了解模型,请前往语言模型部分。

代码

https://github.com/zgpeace/pets-name-langchain/tree/develop

参考

https://python.langchain.com/docs/get_started/quickstart

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/241584.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习(八):bert理解之transformer

1.主要结构 transformer 是一种深度学习模型,主要用于处理序列数据,如自然语言处理任务。它在 2017 年由 Vaswani 等人在论文 “Attention is All You Need” 中提出。 Transformer 的主要特点是它完全放弃了传统的循环神经网络(RNN&#x…

智能优化算法应用:基于爬行动物算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于爬行动物算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于爬行动物算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.爬行动物算法4.实验参数设定5.算法结果6.…

PHP函数定义和分类

函数的含义和定义格式 在PHP中,允许程序员将常用的流程或者变量等组件组织成一个固定的格式实现特定功能,也就是说函数是具有特定功能特定格式的代码段。 函数的定义格式如下: function 函数名(参数1,参数2,参数n) {…

Web前端 ---- 【Vue】vue路由守卫(全局前置路由守卫、全局后置路由守卫、局部路由path守卫、局部路由component守卫)

目录 前言 全局前置路由守卫 全局后置路由守卫 局部路由守卫之path守卫 局部路由守卫之component守卫 前言 本文介绍Vue2最后的知识点,关于vue的路由守卫。也就是鉴权,不是所有的组件任何人都可以访问到的,需要权限,而根据权限…

Hadoop入门学习笔记——六、连接到Hive

视频课程地址:https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接:https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记(汇总) 目录 六、连接到Hive6.1. 使用Hive的Shell客户端6.2. 使用Beel…

vue3(五)-基础入门之计算属性

一、计算属性 1.计算属性与普通方法的的区别: 计算属性在需要渲染数据时调用一次,而后将结果缓存起来。只有计算属性所依赖的数据发生改变时才会重新调用函数,否则每次渲染相同的数据都只会从缓存中读取。 普通方法在每次数据需要渲染时都会…

CGAL的网格简化

1、介绍 曲面网格简化是减少曲面网格中使用的面数,同时尽可能保持整体形状、体积和边界的过程。它是细分法的反面。 这里提出的算法可以使用称为边折叠的方法简化任何有向2流形曲面,具有任意数量的连接组件,有或没有边界(边界或孔…

为什么react call api in cDidMount

为什么react call api in cDM 首先,放到constructor或者cWillMount不是语法错误 参考1 参考2 根据上2个参考,总结为: 1、官网就是这么建议的: 2、17版本后的react 由于fiber的出现导致 cWM 会调用多次! cWM 方法已…

Redis数据一致解决方案

文章目录 前言技术积累查询缓存业务流程更新缓存业务流程 更新缓存问题解决方案写在最后 前言 当前的应用服务很多都有着高并发的业务场景,对于高并发的解决方案一般会用到缓存来降低数据库压力,并且还能够提高系统性能减少请求耗时,比如我们…

深度学习(七):bert理解之输入形式

传统的预训练方法存在一些问题,如单向语言模型的局限性和无法处理双向上下文的限制。为了解决这些问题,一种新的预训练方法随即被提出,即BERT(Bidirectional Encoder Representations from Transformers)。通过在大规模…

蓝牙技术在物联网中的应用

随着蓝牙技术的不断演进和发展,蓝牙已经从单一的传统蓝牙技术发展成集传统蓝牙。高速蓝牙和低耗能蓝牙于一体的综合技术,不同的应用标准更是超过40个越来越广的技术领域和越来越多的应用场景,使得目前的蓝牙技术成为包含传感器技术、识别技术…

【Spring Security】打造安全无忧的Web应用--使用篇

🥳🥳Welcome Huihuis Code World ! !🥳🥳 接下来看看由辉辉所写的关于Spring Security的相关操作吧 目录 🥳🥳Welcome Huihuis Code World ! !🥳🥳 一.Spring Security中的授权是…

Netty-2-数据编解码

解析编解码支持的原理 以编码为例,要将对象序列化成字节流,你可以使用MessageToByteEncoder或MessageToMessageEncoder类。 这两个类都继承自ChannelOutboundHandlerAdapter适配器类,用于进行数据的转换。 其中,对于MessageToMe…

基于 Webpack 插件体系的 Mock 服务

背景 在软件研发流程中,对于前后端分离的架构体系而言,为了能够更快速、高效的实现功能的开发,研发团队通常来说会在产品原型阶段对前后端联调的数据接口进行结构设计及约定,进而可以分别同步进行对应功能的实现,提升研…

深度学习 | 基础卷积神经网络

卷积神经网络是人脸识别、自动驾驶汽车等大多数计算机视觉应用的支柱。可以认为是一种特殊的神经网络架构,其中基本的矩阵乘法运算被卷积运算取代,专门处理具有网格状拓扑结构的数据。 1、全连接层的问题 1.1、全连接层的问题 “全连接层”的特点是每个…

kubernetes集群 应用实践 kafka部署

kubernetes集群 应用实践 kafka部署 零.1、环境说明 零.2、kafka架构说明 zookeeper在kafka集群中的作用 一、Broker注册 二、Topic注册 三、Topic Partition选主 四、生产者负载均衡 五、消费者负载均衡 一、持久化存储资源准备 1.1 创建共享目录 [rootnfsserver ~]# mkdir -…

锯齿云服务器租赁使用教程

首先登陆锯齿云账号 网盘上传数据集与代码 随后我们需要做的是将所需要的数据集与代码上传到网盘(也可以直接在租用服务器后将数据集与代码传到服务器的硬盘上,但这样做会消耗大量时间,造成资源浪费) 点击工作空间:…

谷粒商城-商品服务-新增商品功能开发(商品图片无法展示问题没有解决)

在网关配置路由 - id: member_routeuri: lb://gulimemberpredicates:- Path/api/gulimember/**filters:- RewritePath/api/(?<segment>.*),/$\{segment}并将所有逆向生成的工程调式出来 获取分类关联的品牌 例如&#xff1a;手机&#xff08;分类&#xff09;-> 品…

Python算法例26 落单的数Ⅳ

1. 问题描述 给定数组&#xff0c;除了一个数出现一次外&#xff0c;所有数都出现两次&#xff0c;并且所有出现两次的数都挨着&#xff0c;找出出现一次的数。 2. 问题示例 给出nums[3&#xff0c;3&#xff0c;2&#xff0c;2&#xff0c;4&#xff0c;5&#xff0c;5]&am…

ZooKeeper 使用介绍和原理详解

目录 1. 介绍 重要性 应用场景 2. ZooKeeper 架构 服务角色 数据模型 工作原理 3. 安装和配置 下载 ZooKeeper 安装和配置 启动 ZooKeeper 验证和管理 停止和关闭 4. ZooKeeper 数据模型 数据结构和层次命名空间&#xff1a; 节点类型和 Watcher 机制&#xff…