碳排放预测 | 基于ARIMA和GM(1,1)的碳排放预测(Matlab)

目录

      • 预测效果
      • 基本介绍
      • 模型描述
        • ARIMA模型
        • GM(1,1)模型
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

基于ARIMA和GM(1,1)的碳排放预测(Matlab)

基于ARIMA(自回归移动平均模型)和GM(1,1)(灰色预测模型)的碳排放预测是一种常见的时间序列预测方法。

模型描述

ARIMA模型

ARIMA模型是一种经典的时间序列预测方法,它包含三个部分:自回归(AR)、差分(I)和移动平均(MA)。ARIMA模型的基本思想是通过对历史数据的分析来捕捉时间序列的趋势和周期性,从而进行未来值的预测。
ARIMA模型的建模过程通常包括以下步骤:

确定是否需要对原始数据进行平稳化处理,即检验时间序列数据是否具有平稳性。
如果数据不平稳,进行差分操作,直到数据平稳。
通过自相关函数(ACF)和偏自相关函数(PACF)的分析,确定ARIMA模型的阶数。
估计ARIMA模型的参数。
对模型进行诊断检验,确保模型的拟合程度和残差的随机性。
使用训练好的模型进行未来值的预测。

GM(1,1)模型

GM(1,1)模型是一种基于灰色系统理论的预测模型,适用于具有较少数据、无法建立充分统计模型的情况。该模型通过对原始数据进行累加、生成新序列,然后通过建立一阶差分方程来描述序列的发展趋势。
GM(1,1)模型的建模过程通常包括以下步骤:

累加原始数据得到累加生成序列。
建立一阶差分方程,通过参数估计求解出灰色模型的发展系数。
对模型进行检验,判断模型的拟合程度。
使用训练好的模型进行未来值的预测。
对于碳排放预测,您可以按照以下步骤进行操作:

收集碳排放的历史数据,确保数据是按照时间顺序排列的。
首先尝试使用ARIMA模型进行建模和预测,按照ARIMA模型的步骤进行操作。确定合适的ARIMA模型阶数,并训练模型。
进行ARIMA模型的诊断检验,评估模型的拟合优度。
如果ARIMA模型不满足要求,可以尝试使用GM(1,1)模型进行建模和预测。按照GM(1,1)模型的步骤进行操作,确定灰色模型的发展系数,并训练模型。
进行GM(1,1)模型的检验,评估模型的拟合优度。
使用训练好的模型进行未来的碳排放预测。

ARIMA和GM(1,1)模型都是基于历史数据进行预测,对于未来的碳排放预测仍会受到其他因素的影响,如政策变化、技术进步等。因此,预测结果仅供参考,并不一定完全准确。在实际应用中,还需综合考虑其他因素,进行综合分析和判断。

程序设计

  • 完整程序和数据获取方式:私信博主回复基于ARIMA和GM(1,1)的碳排放预测(Matlab)

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/241502.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pinely Round 3 (Div. 1 + Div. 2)(A~D)(有意思的题)

A - Distinct Buttons 题意: 思路:模拟从(0,0)到每个位置需要哪些操作,如果总共需要4种操作就输出NO。 // Problem: A. Distinct Buttons // Contest: Codeforces - Pinely Round 3 (Div. 1 Div. 2) // URL: https…

【docker笔记】docker理论及安装

前言 本笔记来源于尚硅谷docker教学视频 视频地址:https://www.bilibili.com/video/BV1gr4y1U7CY/?spm_id_from333.337.search-card.all.click 纯手打笔记,来之不易,感谢支持~ Docker简介 docker为什么会出现 想象一下:一个应用…

Python遥感影像深度学习指南(1)-使用卷积神经网络(CNN、U-Net)和 FastAI进行简单云层检测

【遥感影像深度学习】系列的第一章,Python遥感影像深度学习的入门课程,介绍如何使用卷积神经网络(CNN)从卫星图像中分割云层 1、数据集 在本项目中,我们将使用 Kaggle 提供的 38-Cloud Segmentation in Satellite Images数据集。 该数据集由裁剪成 384x384 (适用…

第1课 配置FFmpeg+OpenCV开发环境

一、配置开发环境 1.下载FFmpegOpenCV开发所用的SDK压缩包,并解压到E:\SDK下,解压后的路径应为:E:\SDK\ffmpeg-sdk\58\x86\dll及E:\SDK\opencv-sdk\340\x86\dll。 2.新建VC项目,名称为demo1,项目类弄为MFC应用程序&a…

第26关 K8s日志收集揭秘:利用Log-pilot收集POD内业务日志文件

------> 课程视频同步分享在今日头条和B站 大家好,我是博哥爱运维。 OK,到目前为止,我们的服务顺利容器化并上了K8s,同时也能通过外部网络进行请求访问,相关的服务数据也能进行持久化存储了,那么接下来…

【新版】软考 - 系统架构设计师(总结笔记)

个人总结学习笔记,仅供参考!!!! →点击 笔者主页,欢迎关注哦(互相学习,共同成长) 笔记目录 📢【系统架构设计系列】系统架构设计专业技能 计算机组成与结构操作系统信…

MATLAB - 四元数(quaternion)

系列文章目录 前言 一、简介 四元数是一种四元超复数,用于三维旋转和定向。 四元数的表示形式为 abicjdk,其中 a、b、c 和 d 为实数,i、j 和 k 为基元,满足等式:i2 j2 k2 ijk -1。 四元数集用 H 表示&#xff0c…

Flink面试题与详解

Flink面试题目合集 从牛客网上找到的一些面试题,如果还有其他的,欢迎大家补充。 1、能否详细描述下Apache Flink的架构组件和其工作原理?请介绍一下Flink on YARN部署模式的工作原理。 官网图: 由两个部分组成,JM&am…

将PPT的图保持高分辨率导入到Word / WPS中

1、将PPT中画好的图组合在一起,选择组合后的图复制(Ctrlc) 2、在Word中,选中左上角的粘贴选项--->选择性粘贴 WPS选择元文件 / Word选择增强型图元文件 这样放大也不模糊了

提前预测刚体移动轨迹 预测运动轨迹

提前预测刚体移动轨迹 预测运动轨迹 一、效果二、介绍三、脚本RigidbodyExtension.cs 计算工具类DrawLine.cs 画线工具类 四、资源分享 一、效果 二、介绍 通过计算Unity物理系统的运动方位来判断下一步移动的位置,主要用于物体运动的提前预测,通常使用…

华为vrrp+mstp+ospf+dhcp+dhcp relay配置案例

1、左边是vlan 10主桥,右边是vlan 20的主桥,并且互为备桥 2、 vlan 10 vrrp网关默认用左边,vlan 20的vrrp 网关默认用右边,对应mstp生成树 3、两边都track检测,不通就把vrrp减掉60,这样就会自动切另一边了 …

Hadoop入门学习笔记——七、Hive语法

视频课程地址:https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接:https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记(汇总) 目录 七、Hive语法7.1. 数据库相关操作7.1.1. 创建数据库7.1.2…

kubernetes集群 应用实践 zookeeper部署

kubernetes集群 应用实践 zookeeper部署 零、环境说明 一、zookeeper持久存储准备 zookeeper属于有状态应用,需要为zookeeper部署后端存储服务。 1.1 在NFS服务器添加一块硬盘vdc [rootnfsserver ~]# lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT …

【Python】基于flaskMVT架构与session实现博客前台登录登出功能

目录 一、MVT说明 1.Model层 2.View层 3.Template层 二、功能说明 三、代码框架展示 四、具体代码实现 models.py 登录界面前端代码 博客界面前端代码(profile.html) main.py 一、MVT说明 MVT架构是Model-View-Template的缩写,是…

持续集成交付CICD:Linux 部署 Jira 9.12.1

目录 一、实验 1.环境 2.K8S master节点部署Jira 3.Jira 初始化设置 4.Jira 使用 一、实验 1.环境 (1)主机 表1 主机 主机架构版本IP备注master1K8S master节点1.20.6192.168.204.180 jenkins slave (从节点) jira9.12.1…

使用vue-qr,报错in ./node_modules/vue-qr/dist/vue-qr.js

找到node_modules—>vue-qr/dist/vue-qr.js文件,搜…e,将…去掉,然后重新运行项目。

Confluent 与阿里云将携手拓展亚太市场,提供消息流平台服务

10 月 31 日,杭州云栖大会上,阿里云云原生应用平台负责人丁宇宣布,Confluent 成为阿里云技术合作伙伴,合作全新升级,一起拓展和服务亚太市场。 本次合作伙伴签约,阿里云与消息流开创领导者 Confluent 将进一…

git入门指南:新手快速上手git(Linux环境如何使用git)

目录 前言 1. 什么是git? 2. git版本控制器 3. git在Linux中的使用 安装git 4. git三板斧 第一招:add 第二招:commit 第三招:push 5. 执行状态 6. 删除 总结 前言 Linux的基本开发工具介绍完毕,接下来介绍一…

重构云计算,打造 AI 原生时代的云计算产品与技术体系,实现 AI 零距离

概述 自 ChatGPT 大模型横空出世以来,文心一言、通义千问等诸多大模型接踵而来,感觉这个世界每天都在发生着翻天覆地的变化。 今年很有幸,参与了云栖的盛宴,当时被震惊到瞠目结舌,12 月 20 日百度云智能云智算大会&a…

Flink实时电商数仓(五)

FlinkSQL的join Regular join普通join,两条流的数据都时存放在内存的状态中,如果两条流数据都很大,对内存压力很大。Interval Join: 适合两条流到达时间有先后关系的;一条流的存活时间短,一条流的存活时间长。Lookup …