TLC2543(12位A/D转换器)实现将输入的模拟电压显示到数码管上

代码:

#include <reg51.h>
#define uchar unsigned char
#define uint unsigned int// 数码管0-9
unsigned char seg[] = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F};
sbit SDO = P1^0;
sbit SDI = P1^1;
sbit CS = P1^2;
sbit CLK = P1^3;
sbit EOC = P1^4;sbit  wei1=P2^0;
sbit  wei2=P2^1;
sbit  wei3=P2^2;
sbit  wei4=P2^3;void delay(uint N)
{uint i;for (i = 0; i < N; i++);
}uint getdata(uchar channel)   
{	 uchar i; // for loopuint dat = 0; // 输出的数据,一共十六位,前四位为0CS = 0;						//for(i = 0; i < 12; i++){dat <<= 1;if(SDO == 1) dat |= 0x01;// 高位溢出,溢出数据CY给输入SDIchannel <<= 1; SDI = CY; // CLK一次脉冲,传输数据CLK = 1; delay(3);CLK = 0; delay(3);}CS = 1;		return dat;
}void display(void){uint value;/* 输入命令字,获取数据: 将AIN2输入的5V模拟量转换为4095(2^12 - 1)的离散量 */value = getdata(0x20) * 1.221; // 5000 / 4095wei1 = 0;P0 = seg[value/1000] + 0x80; // 输出小数点delay(500);wei1 = 1;wei2 = 0;P0 = seg[value%1000/100];delay(500);wei2 = 1;wei3 = 0;P0=seg[value%100/10];delay(500);wei3=1;wei4=0;P0=seg[value%10];delay(500);wei4=1;
}void main(){	while(1){while(!EOC); // 转换结束端,EOC为1时,输出完成display();}
}

仿真:

介绍:

在单片机测控系统中,非电量如温度、压力、流量、速度等,经传感器先转换成连续变化的模拟电信号(电压或电流),然后再将模拟电信号转换成数字量后才能在单片机中进行处理。实现模拟量转换成数字量的器件称为ADC(A/D转换器)。

        单片机处理完毕的数字量,有时根据控制要求需要转换为模拟信号输出。数字量转换成模拟量的器件称为DAC(D/A转换器)。本章从应用的角度,介绍典型的ADC、DAC芯片与AT89S51单片机的硬件接口设计以及接口驱动程序设计。

单片机扩展AD转换
        单片机只能输出数字量,但是对于某些控制场合,常常需要输出模拟量,例如直流电动机的转速控制。下面介绍单片机如何扩展DAC。

        目前集成化的DAC芯片种类繁多,设计者只需要合理选用芯片,了解它们的性能、引脚外特性以及与单片机的接口设计方法即可。由于现在部分单片机的芯片中集成了DAC,位数一般在10位左右,且转换速度也很快,所以单片的DAC开始向高的位数和高转换速度上转变。而低端的并行8位DAC,开始面临被淘汰的危险,但是在实验室或涉及某些工业控制方面的应用,低端8位DAC以其优异的性价比还是具有较大的应用空间。

1.D/A转换器简介

        购买和使用D/A转换器时,要注意有关D/A转换器选择的几个问题。

(1)D/A转换器的输出形式

        D/A转换器有两种输出形式:电压输出和电流输出。电流输出的D/A转换器在输出端加一个运算放大器构成的I-V转换电路,即可转换为电压输出。

(2)D/A转换器与单片机的接口形式

        单片机与D/A转换器的连接,早期多采用8位的并行传输的接口,现在除了并行接口外,带有串行口的D/A转换器品种也不断增多,目前较为流行多采用SPI串行接口。在选择单片D/A转换器时,要根据系统结构考虑单片机与D/A转换器的接口形式。
2.主要技术指标

        D/A转换器的指标很多,设计者最关心的几个指标如下。

(1)分辨率

        分辨率指单片机输入给D/A转换器的单位数字量的变化,所引起的模拟量输出的变化,通常定义为输出满刻度值与2n之比(n为D/A转换器的二进制位数),习惯上用输入数字量的位数表示。显然,二进制位数越多,分辨率越高,即D/A转换器输出对输入数字量变化的敏感程度越高。例如,8位的D/A转换器,若满量程输出为10V,根据分辨率定义,则分辨率为10V/2n,分辨率为10V/256 = 39.1mV,即输入的二进制数最低位数字量的变化可引起输出的模拟电压变化39.1mV,该值占满量程的0.391%,常用符号1LSB表示。

同理:

10位D/A转换  1 LSB = 9.77mV = 0.1%满量程

12位D/A转换  1 LSB = 2.44mV = 0.024%满量程

16位D/A转换  1 LSB = 0.076mV = 0.00076%满量程

使用时,应根据对D/A转换器分辨率的需要选定D/A转换器的位数。

(2)建立时间

        建立时间是描述D/A转换器转换速度的参数,表明转换时间长短。其值为从输入数字量到输出达到终值误差± (1/2)LSB(最低有效位)时所需的时间。电流输出的转换时间较短,而电压输出的转换器,由于要加上完成I-V转换的时间,因此建立时间要长一些。快速D/A转换器的建立时间可控制在1us以下。
(3)转换精度

        理想情况下,转换精度与分辨率基本一致,位数越多精度越高。但由于电源电压、基准电压、电阻、制造工艺等各种因素存在误差。严格地讲,转换精度与分辨率并不完全一致。两个相同位数的不同的DAC,只要位数相同,分辨率则相同,但转换精度会有所不同。例如,某种型号的8位DAC精度为±0.19%,而另一种型号的8位DAC精度为±0.05%

AT89S51扩展12位串行ADC-TLC2543的设计

        串行A/D转换器与单片机连接具有占用I/O口线少优点,使用逐渐增多,随着价格降低,大有取代并行A/D转换器趋势。下面首先介绍串行A/D转换器TLC2543基本特性及工作原理。

  1. TLC2543的特性及工作原理

            美国TI的12位串行SPI接口的A/D转换器,转换时间为10µs。片内有1个14路模拟开关,用来选择11路模拟输入以及3路内部测试电压中的1路进行采样。为了保证测量结果的准确性,该器件具有3路内置自测试方式,可分别测试“REF+”高基准电压值,“REF-”低基准电压值和“REF+/2”值,该器件的模拟量输入范围为REF+~REF-,一般模拟量的变化范围为0~+5V,所以此时REF+脚接+5V,REF-脚接地。由于TLC2543与单片机接口简单,且价格适中,分辨率较高,因此在智能仪器仪表中有着较为广泛应用。

  • AIN0~AIN10:11路模拟量输入端。
  • CS :片选端。
  • DATAINPUT:串行数据输入端。由4位的串行地址输入来选择模拟量输入通道。
  • DATA OUT:A/D转换结果的三态串行输出端。 为高时处于高阻抗状态, 为低时处于转换结果输出状态。
  • EOC:转换结束端。
  • I/O CLOCK:I/O时钟端。
  • REF+:正基准电压端。基准电压的正端(通常为Vcc)被加到REF+,最大的输入电压范围为加在本引脚与REF-引脚的电压差。
  • REF-:负基准电压端。基准电压低端(通常为地)加此端。
  • Vcc:电源。
  • GND:地。
  1. TLC2543工作过程

    工作过程分为两个周期:I/O周期和实际转换周期。

(1)I/O周期

        I/O周期由外部提供的I/O CLOCK定义,延续8、12或16个时钟周期,取决于选定的输出数据长度。器件进入I/O周期后同时进行两种操作。

        ①在I/OCLOCK的前8个脉冲的上升沿,以MSB前导方式从DATAINPUT端输入8位数据到输入寄存器。其中前4位为模拟通道地址,控制14通道模拟多路器从11个模拟输入和3个内部自测电压中,选通1路到采样保持器,该电路从第4个I/OCLOCK。脉冲下降沿开始,对所选的信号进行采样,直到最后一个I/O CLOCK脉冲下降沿。

I/O脉冲时钟个数与输出数据长度(位数)有关,输出数据的长度由输入数据的D3、D2可选择为8位、12位或16位。当工作于12位或16位时,在前8个脉冲之后,DATAINPUT无效。

        ②在DATA OUT端串行输出8位、12位或16位数据。当 保持为低时,第1个数据出现在EOC的上升沿,若转换由 控制,则第1个输出数据发生在 的下降沿。这个数据是前1次转换的结果,在第1个输出数据位之后的每个后续位均由后续的I/OCLOCK脉冲下降沿输出。

(2)转换周期

        在I/O周期最后一I/OCLOCK脉冲下降沿后,EOC变低,采样值保持不变,转换周期开始,片内转换器对采样值进行逐次逼近式A/D转换,其工作由与I/OCLOCK同步的内部时钟控制。

        转换结束后EOC变高,转换结果锁存在输出数据寄存器中,待下一I/O周期输出。I/O周期和转换周期交替进行,从而可减少外部的数字噪声对转换精度影响。

  1. TLC2543命令字

            每次转换都必须向TLC2543写入命令字,以便确定被转换信号来自哪个通道,转换结果用多少位输出,输出的顺序是高位在前还是低位在前,输出结果是有符号数还是无符号数。命令字写入顺序是高位在前。命令字格式如下:

(1) 通道地址选择位

        选择输入通道。0000~1010分别是11路模拟量AIN0~AIN10的地址;地址1011、1100和1101所选择的自测试电压分别是((VREF+)-(VREF-))/2、VREF-、VREF+。1110是掉电地址,选掉电后,TLC2543处于休眠状态,此时电流小于20µA。
(2)数据长度(D3~D2)位用来选择转换的结果用多少位输出。D3D2为x0:12位输出;D3D2为01:8位输出;D3D2为11:16位输出。

(3)数据的顺序位(D1)用来选择数据输出的顺序。D1=0,高位在前;D1=1,低位在前。

(4)数据的极性位(D0)用来选择数据的极性。D0=0,数据是无符号数;D0=1,数据是有符号数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/240704.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】打印内存数据

C语言&#xff0c;用函数封装&#xff1a;16进制打印unsigned char *p指向的内存&#xff0c;长度为int l。16个字节&#xff0c;换一次行。16个字节用一个字符串缓存&#xff0c;一次打印。 以下是一个使用函数封装的C语言代码&#xff0c;用于以16进制格式打印unsigned char …

MyBatis——MyBatis的延迟加载

MyBatis的延迟加载&#xff08;一对多查询案例&#xff09; 1.什么是延迟加载&#xff1f; 开启延迟加载后&#xff0c;在真正使用数据的时候才发起级联查询&#xff0c;不用的时候不查询。 2.pojo User类&#xff1a; package com.wt.pojo;import java.io.Serializable; …

计算机毕业设计------JSP教务处学生成绩管理系统

项目介绍 本项目包含管理员、教师、学生三种角色&#xff1b; 用户角色包含以下功能&#xff1a; 修改密码,查看自己的信息,查看自己的成绩,登录界面等功能。 管理员角色包含以下功能&#xff1a; 修改示例,增删改查学生信息,增删改查教师信息,增删改查课程信息,管理员修改…

电机控制 相关基础概念

基本概念: 定子或者转子上有铁心或者绕铜线的地方,绕铜线的地方叫槽,而将槽分开的叫齿,将所有的齿连起来的部位较轭部。 磁感应强度与磁场强度之间的关系可以通过以下公式表示: B=μH 其中,B 是磁感应强度,H 是磁场强度,μ 是磁导率。这个关系表明,在给定磁场强度下…

Golang 通用代码生成器仙童发布 2.4.0 电音仙女尝鲜版一及其介绍两个模式的视频

Golang 通用代码生成器仙童发布 2.4.0 电音仙女尝鲜版一及其介绍两个模式的视频 Golang 通用代码生成器仙童已发布 2.4.0 电音仙女尝鲜版一及其介绍视频。视频请见&#xff1a; 正常模式&#xff1a; https://www.bilibili.com/video/BV1fw411V77i/ 哑数据模式&#xff1a;…

@z-utils组 重构和自动化实现

highlight: monokai theme: github 包简介 z-utils组 是一个可以在vue/react/pure js 中使用的工具包&#xff0c;它包含三个子类&#xff0c;分别为 z-utils/base, z-utils/react, z-utils/vue 三个分别在不同区域使用。 他是原 zzy-javascript-devtools 的重构版本&#xf…

嵌入式系统复习--Thumb指令集

文章目录 上一篇Thumb指令集概述Thumb指令详细介绍数据处理指令数据存储指令转移指令异常中断指令 下一篇 上一篇 嵌入式系统复习–ARM指令集(二) Thumb指令集概述 在编写Thumb指令时&#xff0c;先要用伪指令CODE16声明&#xff08;ADS的编译环境下&#xff09;&#xff0c…

程序设计的思想

程序设计思想是指在程序设计过程中所采用的一种思维方式&#xff0c;它是程序设计的灵魂和基础。程序设计思想的正确与否直接关系到程序的质量和可维护性。在实际的程序设计中&#xff0c;我们需要遵循一定的程序设计思想&#xff0c;以确保程序的正确性、可读性和可维护性。 …

序列化和反序列化对比分析,序列化和反序列化输出十个学生信息截图

序列化和反序列化是数据处理中的两个相对的概念&#xff0c;通常用于对象的存储和传输。下面是对这两个过程的对比分析&#xff1a; 序列化&#xff08;Serialization&#xff09; 定义 目的&#xff1a; 将对象的状态信息转换成可以存储或传输的形式&#xff08;如XML, JSO…

循环渲染ForEach

目录 1、接口说明 2、键值生成规则 3、组件创建规则 3.1、首次渲染 3.2、非首次渲染 4、使用场景 4.1、数据源不变 4.2、数据源组项发生变化 4.3、数据源数组项子属性变化 5、反例 5.1、渲染结果非预期 5.2、渲染性能降低 Android开发中我们有ListView组件、GridVi…

linux:IP地址、修改主机名、域名解析、虚拟机配置固定IP

一:IP地址 1、每一台联网的电脑都会有一个地址&#xff0c;用于和其它计算机进行通讯 2、IP地址主要有2个版本,V4版本和V6版本(V6很少用暂不涉及) 3、IPv4版本的地址格式是:a.b.c.d,其中abcd表示0~255的数字,如192.168.88.101就是一个标准的IP地址 4、可以通过命令:ifconfi…

视频监控技术经历了哪些发展阶段?视频监控技术未来趋势展望

随着城市经济的发展和进步&#xff0c;视频监控也已经应用在人们衣食住行的方方面面&#xff0c;成为社会主体的一个重要组成部分。随着视频监控的重要性越来越凸显&#xff0c;大家对视频监控技术的发展也非常关注。今天我们来简单阐述一下&#xff0c;视频监控技术经历的几个…

基于多反应堆的高并发服务器【C/C++/Reactor】(中)ChannelMap 模块的实现

&#xff08;三&#xff09;ChannelMap 模块的实现 这个模块其实就是为Channel来服务的&#xff0c;前面讲了Channel这个结构体里边它封装了文件描述符。假如说我们得到了某一个文件描述符&#xff0c;需要基于这个文件描述符进行它对应的事件处理&#xff0c;那怎么办呢&…

windos/ubuntu20.4下UE4.27.2像素流送

windows/ubuntu20.4下UE4.27.2像素流送 像素流送技术可以将服务器端打包的虚幻引擎应用程序在客户端的浏览器上运行&#xff0c;用户可以通过浏览器操作虚幻引擎应用程序&#xff0c;客户端无需下载虚幻引擎&#xff0c;本文实现两台机器通过物理介质网线实现虚幻引擎应用程序…

企业出海-如何保护客户账户安全?

近年来国内企业竞争日益激烈&#xff0c;许多企业在这般环境下难以持续发展。那么该如何获得业务的可持续性增长&#xff0c;如何获取更多的客户的同时开阔公司的视野&#xff1f;出海便是如今帮助国内企业能快速发展壮大的潮流之一&#xff0c;摆脱了局限于国内发展的束缚奔向…

单调栈分类、封装和总结

作者推荐 map|动态规划|单调栈|LeetCode975:奇偶跳 通过枚举最小&#xff08;最大&#xff09;值不重复、不遗漏枚举所有子数组 C算法&#xff1a;美丽塔O(n)解法单调栈左右寻找第一个小于maxHeight[i]的left,right&#xff0c;[left,right]直接的高度都是maxHeight[i] 可以…

第十二章 异常-Exception

一、异常的概念&#xff08;P444&#xff09; Java 语言中&#xff0c;将程序执行中发生的不正常情况称为“异常”。&#xff08;开发过程中的语法错误和逻辑错误不是异常&#xff09; 执行过程中所发生的异常事件可分为两大类 &#xff08;1&#xff09;Error&#xff08;错误…

OpenCV-Python(19):Canny边缘检测

目录 学习目标 Canny 边缘检测原理 1.噪声抑制(噪声去除) 2.梯度计算 3.非极大值抑制 4.双阈值检测(滞后阈值) 5.边缘连接 Canny 边缘检测步骤 Canny 边缘检测的OpenCV实现 不同阈值的边缘检测效果 学习目标 了解Canny边缘检测的概念学习掌握函数cv2.Canny()的用法 …

【星海出品】Keepalived 使用基础案例 (二)

keepalived 使用 [rootmaster ~]# cat /etc/keepalived/keepalived.conf ! Configuration File for keepalivedglobal_defs { //全局配置notification_email { //定义报警收件人邮件地址acassenfirewall.locfailoverfirewall.locsysadminfirewall.loc}notification_…

laravel 对接支付,本地穿透问题

本地穿透有好多工具&#xff0c;参考链接&#xff1a;https://zhuanlan.zhihu.com/p/339923535 我这边是用的 NATAPP 官网&#xff1a;https://natapp.cn/ 客户端下载&#xff1a;https://natapp.cn/# NATAPP1分钟快速新手图文教程&#xff1a;https://natapp.cn/article/n…