C# Onnx yolov8n csgo player detection

目录

效果

模型信息

项目

代码

下载


C# Onnx yolov8n csgo player detection

效果

模型信息

Model Properties
-------------------------
date:2023-12-22T15:01:08.014205
author:Ultralytics
task:detect
license:AGPL-3.0 https://ultralytics.com/license
version:8.0.172
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'ct', 1: 'cthead', 2: 't', 3: 'thead'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 8, 8400]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;

namespace Onnx_Yolov8_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        string classer_path;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        DetectionResult result_pro;
        Mat result_image;
        Result result;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";

            //图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] result_array = new float[8400 * 84];
            float[] factors = new float[2];
            factors[0] = factors[1] = (float)(max_image_length / 640.0);

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

            // 输入Tensor
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
                    input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
                    input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            result_array = result_tensors.ToArray();

            resize_image.Dispose();
            image_rgb.Dispose();

            result_pro = new DetectionResult(classer_path, factors);
            result = result_pro.process_result(result_array);
            result_image = result_pro.draw_result(result, image.Clone());

            if (!result_image.Empty())
            {
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
            }
            else
            {
                textBox1.Text = "无信息";
            }

            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;

            model_path = "model/yolov8n-csgo-player-detection.onnx";
            classer_path = "model/lable.txt";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }

                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }
    }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;DetectionResult result_pro;Mat result_image;Result result;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}button2.Enabled = false;pictureBox2.Image = null;textBox1.Text = "";//图片缩放image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] result_array = new float[8400 * 84];float[] factors = new float[2];factors[0] = factors[1] = (float)(max_image_length / 640.0);// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensorfor (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();resize_image.Dispose();image_rgb.Dispose();result_pro = new DetectionResult(classer_path, factors);result = result_pro.process_result(result_array);result_image = result_pro.draw_result(result, image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}else{textBox1.Text = "无信息";}button2.Enabled = true;}private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = "model/yolov8n-csgo-player-detection.onnx";classer_path = "model/lable.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_container = new List<NamedOnnxValue>();image_path = "test_img/1.jpg";pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}SaveFileDialog sdf = new SaveFileDialog();private void button3_Click(object sender, EventArgs e){if (pictureBox2.Image == null){return;}Bitmap output = new Bitmap(pictureBox2.Image);sdf.Title = "保存";sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";if (sdf.ShowDialog() == DialogResult.OK){switch (sdf.FilterIndex){case 1:{output.Save(sdf.FileName, ImageFormat.Jpeg);break;}case 2:{output.Save(sdf.FileName, ImageFormat.Png);break;}case 3:{output.Save(sdf.FileName, ImageFormat.Bmp);break;}case 4:{output.Save(sdf.FileName, ImageFormat.Emf);break;}case 5:{output.Save(sdf.FileName, ImageFormat.Exif);break;}case 6:{output.Save(sdf.FileName, ImageFormat.Gif);break;}case 7:{output.Save(sdf.FileName, ImageFormat.Icon);break;}case 8:{output.Save(sdf.FileName, ImageFormat.Tiff);break;}case 9:{output.Save(sdf.FileName, ImageFormat.Wmf);break;}}MessageBox.Show("保存成功,位置:" + sdf.FileName);}}}
}

下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/240397.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学会这套Pytest接口自动化测试框架,击败99%的人

Pytest 的下载安装 1、Python3 使用 pip install -U pytest 安装 2、查看 pytest 版本信息 pytest --version 3、pytest 用例的执行规则&#xff1a; ①测试文件以 test_xx.py 命名需要以 test_开头&#xff08;或_test 结尾&#xff09; ②测试类以 Test_开头&#xff0…

智能优化算法应用:基于骑手优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于骑手优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于骑手优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.骑手优化算法4.实验参数设定5.算法结果6.…

跨平台应用程序开发软件,携RAD Studio 12新版上线

RAD Studio 是一款专为程序员而准备的跨平台应用程序开发软件&#xff0c;内置Delphi和CBuilder这两种开发工具&#xff0c;另外还提供了新的C功能&#xff0c;扩展了对ExtJS的RAD服务器支持&#xff0c;增强了对vcL的高dpi支持&#xff0c;提高了firemonk (FMX)的质量等等&…

C++结合OpenCV:掌握图像基础与处理

本文详细介绍了使用 OpenCV4 进行图像处理的基础知识和操作。内容包括图像的基础概念、色彩空间理解、以及如何在 C 中进行图像读取、显示和基础操作。 1.图像的基本概念与术语 图像表示 在计算机视觉中&#xff0c;图像通常表示为一个二维或三维的数组。二维数组表示灰度图像&…

[SQL]实验 视图和索引的应用

实验目的&#xff1a; [实验目的和要求] 1、掌握视图的创建、修改和重命名的方法 2、掌握视图中数据的操作 3、了解索引的作用 4、掌握索引的创建方法 实验步骤&#xff1a; 1、在销售管理数据库中&#xff0c;创建一个女职工视图&#xff0c;包括员工的编号、姓名、性别、雇佣…

网站怎么才能做好SEO?网站SEO指引!!

在当今互联网的激烈竞争中&#xff0c;SEO&#xff08;搜索引擎优化&#xff09;已成为提升网站流量和吸引更多用户的关键手段。为了帮助您更好地掌握SEO网站优化技巧&#xff0c;本文将深入探讨以下几个方面&#xff1a; 一、关键词策略 关键词策略是SEO优化的基石。正确选择…

【WPF.NET开发】创建样式

本文内容 创建样式隐式应用样式显式应用样式以编程方式应用样式扩展样式TargetType 属性与 x:Key 属性之间的关系 使用 Windows Presentation Foundation (WPF)&#xff0c;可以使用自己的可重用样式自定义现有控件的外观。 可以对应用、窗口和页面全局应用样式&#xff0c;也…

Ansible的脚本---Playbook剧本编写

playbook的组成部分 1、 tasks&#xff1a;任务 在目标主机上需要执行的操作。使用模块定义这些操作。每个任务都是一个模块的调用。 2、 variables&#xff1a;变量 用于存储和传递数据。类似于shell脚本中的变量。变量可以自定义。可以在playbook当中定义为全局变量&…

基于Vite+Vue3 给项目引入Axios

基于ViteVue3 给项目引入Axios,方便与后端进行通信。 系列文章指路&#x1f449; 系列文章-基于Vue3创建前端项目并引入、配置常用的库和工具类 文章目录 安装依赖新建src/config/config.js 用于存放常用配置进行简单封装解决跨域问题调用尝试 安装依赖 npm install axios …

PIL/Pillow

Abstract PIL(Python Imaging Library)是一个用于图像处理的 Python 库。它提供了广泛的功能&#xff0c;包括图像加载、保存、调整大小、裁剪、旋转、滤镜应用等。 由于 PIL 的开发停止在 2009 年&#xff0c;因此推荐使用其后续的维护版本 Pillow。Pillow 是一个兼容 PIL 接…

Springboot启动异常 OgnlException: sqlSelect [java.lang.NoSuchMethodError

完整的日志如下&#xff1a; Invocation of init method failed; nested exception is org.mybatis.spring.MyBatisSystemException: nested exception is org.apache.ibatis.builder.BuilderException: Error evaluating expression ew ! null and ew.sqlSelect ! null. Cause…

不忍学弟学妹受苦受难!!!逐一讲解发动机原理实验报告(1)

固体火箭发动机侵蚀燃烧测试实验 经过了愉快迷糊——哦不瑟瑟发抖——哦不痛不欲生的两天&#xff0c;终于和小伙伴们协力完成了西北工业大学航天学院发动机原理实验报告。具体的实验指导书均可在本人博客资源站下载。 固体火箭发动机侵蚀燃烧测试实验&#xff0c;嗯哼—— 实…

MySQL 事务的ACID特性

MySQL事务是什么&#xff0c;它就是一组数据库的操作&#xff0c;是访问数据库的程序单元&#xff0c;事务中可能包含一个或者多个 SQL 语句。这些SQL 语句要么都执行、要么都不执行。我们知道&#xff0c;在MySQL 中&#xff0c;有不同的存储引擎&#xff0c;有的存储引擎比如…

c++学习笔记-提高篇-STL标准模板库3(stack容器、queue容器以及list容器)

目录 Stack容器 一、Stack容器介绍 二、stack常用接口 三、栈的示例 queue&#xff08;队列&#xff09;容器 一、queue容器介绍 二、queue常用接口 三、queue示例 list容器 一、list容器介绍 二、list常用接口及示例 &#xff08;一&#xff09;list构造函数 &am…

使用Swift Package Manager (SPM)实现xcframework分发

Swift Package Manager (SPM) 是苹果官方提供的用于管理 Swift 项目的依赖关系和构建过程的工具。它是一个集成在 Swift 编程语言中的包管理器&#xff0c;用于解决在开发过程中管理和构建包依赖项的需求。 1、上传xcframework.zip到服务端 压缩xcframeworks成一个zip包&…

【flink】状态清理策略(TTL)

flink的keyed state是有有效期(TTL)的&#xff0c;使用和说明在官网描述的篇幅也比较多&#xff0c;对于三种清理策略没有进行横向对比得很清晰。 全量快照清理(FULL_STATE_SCAN_SNAPSHOT)增量清理(INCREMENTAL_CLEANUP)rocksdb压缩清理(ROCKSDB_COMPACTION_FILTER) 注意&…

国图公考:公考常识题如何复习更高效?

公务员考试是许多人求职的首选之一&#xff0c;而公考常识题作为公务员考试的重要组成部分&#xff0c;对于考生来说具有很高的分值。在这一模块的复习中&#xff0c;有以下几点可以帮助考生提高学习效率&#xff0c;一起来看一下吧! 一、明确复习目标 了解自己在各个知识点上…

gitee版本回退本地和仓库的执行步骤(后悔药,无副作用,按说明书使用)

目录 1.本地回退 1.打开项目文件夹 3.回退到指定版本 4.选择回退模式并确认 5.本地回退成功 2.回退仓库版本 1.在git上面找到项目的提交记录 2.找到提交错误的版本​编辑 3.双击新页面这个版本进去 点击操作再点击revert​编辑 4.确认回退 ​5.仓库回退成功 在使用…

The Cherno C++笔记02

目录 Part 06 How the C Compiler Works 1.编译过程 2.C并不关心文件 3.翻译单元&#xff08;Translation Unit&#xff09; 4. 实际用代码感受一下编译过程 4.1 预处理 4.1.1 预处理的本质 4.1.2 预处理后的.i文件 4.1.3 骚操作 4.2 .asm文件&#xff08;汇编语言源文…

安装nodejs,配置环境变量并将npm设置淘宝镜像源

安装nodejs并将npm设置淘宝镜像源 1. 下载nodejs 个人不喜欢安装包&#xff0c;所以是下载zip包的方式。这里我下载的node 14解压包版本 下载地址如下&#xff1a;https://nodejs.org/dist/v14.15.1/node-v14.15.1-win-x64.zip 想要其他版本的小伙伴去https://nodejs.org/di…