FPGA模块——以太网(1)MDIO读写

FPGA模块——以太网MDIO读写

  • MDIO接口介绍
  • MDIO接口代码
    • (1)MDIO接口驱动代码
    • (2)使用MDIO驱动的代码

MDIO接口介绍

MDIO是串行管理接口。MAC 和 PHY 芯片有一个配置接口,即 MDIO 接口,可以配置 PHY 芯片的工作模式以及获取 PHY 芯片的若干状态信息。

1.MDIO部分的接口结构
在这里插入图片描述

2.千兆以太网在接口上兼容百兆和十兆以太网。
在这里插入图片描述
在这里插入图片描述
3.YT8511 是一个千兆以太网物理层收发器,支持 1000/100/10Mbps 通信速率,该芯片内部的参数可以通过MDIO接口进行配置。
在这里插入图片描述

MDIO接口代码

MDIO接口主要是控制三根接口线,进行驱动和读写。
在这里插入图片描述

(1)MDIO接口驱动代码

mdio_dri文件:输入一些读写开始等等控制信号,输出读到的数据和控制芯片的时钟

module mdio_dri #(parameter  PHY_ADDR = 5'b00100,//PHY地址parameter  CLK_DIV  = 6'd10    //分频系数)(input                clk       , //时钟信号input                rst_n     , //复位信号,低电平有效input                op_exec   , //触发开始信号input                op_rh_wl  , //低电平写,高电平读input        [4:0]   op_addr   , //寄存器地址input        [15:0]  op_wr_data, //写入寄存器的数据output  reg          op_done   , //读写完成output  reg  [15:0]  op_rd_data, //读出的数据output  reg          op_rd_ack , //读应答信号 0:应答 1:未应答output  reg          dri_clk   , //驱动时钟output  reg          eth_mdc   , //PHY管理接口的时钟信号inout                eth_mdio    //PHY管理接口的双向数据信号);//parameter define
localparam st_idle    = 6'b00_0001;  //空闲状态
localparam st_pre     = 6'b00_0010;  //发送PRE(前导码)
localparam st_start   = 6'b00_0100;  //开始状态,发送ST(开始)+OP(操作码)
localparam st_addr    = 6'b00_1000;  //写地址,发送PHY地址+寄存器地址
localparam st_wr_data = 6'b01_0000;  //TA+写数据
localparam st_rd_data = 6'b10_0000;  //TA+读数据//reg define
reg    [5:0]  cur_state ;
reg    [5:0]  next_state;reg    [5:0]  clk_cnt   ;  //分频计数                      
reg   [15:0]  wr_data_t ;  //缓存写寄存器的数据
reg    [4:0]  addr_t    ;  //缓存寄存器地址
reg    [6:0]  cnt       ;  //计数器
reg           st_done   ;  //状态开始跳转信号
reg    [1:0]  op_code   ;  //操作码  2'b01(写)  2'b10(读)                  
reg           mdio_dir  ;  //MDIO数据(SDA)方向控制
reg           mdio_out  ;  //MDIO输出信号
reg   [15:0]  rd_data_t ;  //缓存读寄存器数据//wire define
wire          mdio_in    ; //MDIO数据输入
wire   [5:0]  clk_divide ; //PHY_CLK的分频系数assign eth_mdio = mdio_dir ? mdio_out : 1'bz; //控制双向io方向
assign mdio_in = eth_mdio;                    //MDIO数据输入
//将PHY_CLK的分频系数除以2,得到dri_clk的分频系数,方便对MDC和MDIO信号操作
assign clk_divide = CLK_DIV >> 1;//分频得到dri_clk时钟
always @(posedge clk or negedge rst_n) beginif(!rst_n) begindri_clk <=  1'b0;clk_cnt <= 1'b0;endelse if(clk_cnt == clk_divide[5:1] - 1'd1) beginclk_cnt <= 1'b0;dri_clk <= ~dri_clk;endelseclk_cnt <= clk_cnt + 1'b1;
end//产生PHY_MDC时钟
always @(posedge dri_clk or negedge rst_n) beginif(!rst_n)eth_mdc <= 1'b1;else if(cnt[0] == 1'b0)eth_mdc <= 1'b1;else    eth_mdc <= 1'b0;  
end//(三段式状态机)同步时序描述状态转移
always @(posedge dri_clk or negedge rst_n) beginif(!rst_n)cur_state <= st_idle;elsecur_state <= next_state;
end  //组合逻辑判断状态转移条件
always @(*) beginnext_state = st_idle;case(cur_state)st_idle : beginif(op_exec)next_state = st_pre;else next_state = st_idle;   end  st_pre : beginif(st_done)next_state = st_start;elsenext_state = st_pre;endst_start : beginif(st_done)next_state = st_addr;elsenext_state = st_start;endst_addr : beginif(st_done) beginif(op_code == 2'b01)                //MDIO接口写操作  next_state = st_wr_data;elsenext_state = st_rd_data;        //MDIO接口读操作  endelsenext_state = st_addr;endst_wr_data : beginif(st_done)next_state = st_idle;elsenext_state = st_wr_data;end        st_rd_data : beginif(st_done)next_state = st_idle;elsenext_state = st_rd_data;end                                                                          default : next_state = st_idle;endcaseend//时序电路描述状态输出
always @(posedge dri_clk or negedge rst_n) beginif(!rst_n) begincnt <= 5'd0;op_code <= 1'b0;addr_t <= 1'b0;wr_data_t <= 1'b0;rd_data_t <= 1'b0;op_done <= 1'b0;st_done <= 1'b0; op_rd_data <= 1'b0;op_rd_ack <= 1'b1;mdio_dir <= 1'b0;mdio_out <= 1'b1;endelse beginst_done <= 1'b0 ;                            cnt     <= cnt +1'b1 ;          case(cur_state)st_idle : beginmdio_out <= 1'b1;                     mdio_dir <= 1'b0;                     op_done <= 1'b0;                     cnt <= 7'b0;  if(op_exec) beginop_code <= {op_rh_wl,~op_rh_wl}; //OP_CODE: 2'b01(写)  2'b10(读) addr_t <= op_addr;wr_data_t <= op_wr_data;op_rd_ack <= 1'b1;end     end st_pre : begin                          //发送前导码:32个1bit mdio_dir <= 1'b1;                   //切换MDIO引脚方向:输出mdio_out <= 1'b1;                   //MDIO引脚输出高电平if(cnt == 7'd62) st_done <= 1'b1;else if(cnt == 7'd63)cnt <= 7'b0;end            st_start  : begincase(cnt)7'd1 : mdio_out <= 1'b0;        //发送开始信号 2'b017'd3 : mdio_out <= 1'b1; 7'd5 : mdio_out <= op_code[1];  //发送操作码7'd6 : st_done <= 1'b1;7'd7 : beginmdio_out <= op_code[0];cnt <= 7'b0;  end    default : ;endcaseend    st_addr : begincase(cnt)7'd1 : mdio_out <= PHY_ADDR[4]; //发送PHY地址7'd3 : mdio_out <= PHY_ADDR[3];7'd5 : mdio_out <= PHY_ADDR[2];7'd7 : mdio_out <= PHY_ADDR[1];  7'd9 : mdio_out <= PHY_ADDR[0];7'd11: mdio_out <= addr_t[4];  //发送寄存器地址7'd13: mdio_out <= addr_t[3];7'd15: mdio_out <= addr_t[2];7'd17: mdio_out <= addr_t[1];  7'd18: st_done <= 1'b1;7'd19: beginmdio_out <= addr_t[0]; cnt <= 7'd0;end    default : ;endcase                end    st_wr_data : begincase(cnt)7'd1 : mdio_out <= 1'b1;         //发送TA,写操作(2'b10)7'd3 : mdio_out <= 1'b0;7'd5 : mdio_out <= wr_data_t[15];//发送写寄存器数据7'd7 : mdio_out <= wr_data_t[14];7'd9 : mdio_out <= wr_data_t[13];7'd11: mdio_out <= wr_data_t[12];7'd13: mdio_out <= wr_data_t[11];7'd15: mdio_out <= wr_data_t[10];7'd17: mdio_out <= wr_data_t[9];7'd19: mdio_out <= wr_data_t[8];7'd21: mdio_out <= wr_data_t[7];7'd23: mdio_out <= wr_data_t[6];7'd25: mdio_out <= wr_data_t[5];7'd27: mdio_out <= wr_data_t[4];7'd29: mdio_out <= wr_data_t[3];7'd31: mdio_out <= wr_data_t[2];7'd33: mdio_out <= wr_data_t[1];7'd35: mdio_out <= wr_data_t[0];7'd37: beginmdio_dir <= 1'b0;mdio_out <= 1'b1;end7'd39: st_done <= 1'b1;           7'd40: begincnt <= 7'b0;op_done <= 1'b1;      //写操作完成,拉高op_done信号 end    default : ;endcase    endst_rd_data : begincase(cnt)7'd1 : beginmdio_dir <= 1'b0;            //MDIO引脚切换至输入状态mdio_out <= 1'b1;end7'd2 : ;                         //TA[1]位,该位为高阻状态,不操作             7'd4 : op_rd_ack <= mdio_in;     //TA[0]位,0(应答) 1(未应答)7'd6 : rd_data_t[15] <= mdio_in; //接收寄存器数据7'd8 : rd_data_t[14] <= mdio_in;7'd10: rd_data_t[13] <= mdio_in;7'd12: rd_data_t[12] <= mdio_in;7'd14: rd_data_t[11] <= mdio_in;7'd16: rd_data_t[10] <= mdio_in;7'd18: rd_data_t[9] <= mdio_in;7'd20: rd_data_t[8] <= mdio_in;7'd22: rd_data_t[7] <= mdio_in;7'd24: rd_data_t[6] <= mdio_in;7'd26: rd_data_t[5] <= mdio_in;7'd28: rd_data_t[4] <= mdio_in;7'd30: rd_data_t[3] <= mdio_in;7'd32: rd_data_t[2] <= mdio_in;7'd34: rd_data_t[1] <= mdio_in;7'd36: rd_data_t[0] <= mdio_in;7'd39: st_done <= 1'b1;7'd40: beginop_done <= 1'b1;             //读操作完成,拉高op_done信号          op_rd_data <= rd_data_t;rd_data_t <= 16'd0;cnt <= 7'd0;enddefault : ;endcase   end                default : ;endcase               end
end                    endmodule

(2)使用MDIO驱动的代码

mdio_ctrl文件:对寄存器进行读写配置,主要还是读取状态,用于显示

1.基本控制寄存器地址:0x00
代码里面配置为16’h9140 即1001_0001_0100_0000
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.基本状态寄存器地址:0x01
用来读出转态信息
在这里插入图片描述
在这里插入图片描述

3.特定状态寄存器地址:0x11
在这里插入图片描述

module mdio_ctrl(input                clk           ,input                rst_n         ,input                soft_rst_trig , //软复位触发信号input                op_done       , //读写完成input        [15:0]  op_rd_data    , //读出的数据input                op_rd_ack     , //读应答信号 0:应答 1:未应答output  reg          op_exec       , //触发开始信号output  reg          op_rh_wl      , //低电平写,高电平读output  reg  [4:0]   op_addr       , //寄存器地址output  reg  [15:0]  op_wr_data    , //写入寄存器的数据output       [1:0]   led             //LED灯指示以太网连接状态);//reg define
reg          rst_trig_d0;    
reg          rst_trig_d1;    
reg          rst_trig_flag;   //soft_rst_trig信号触发标志
reg  [23:0]  timer_cnt;       //定时计数器 
reg          timer_done;      //定时完成信号
reg          start_next;      //开始读下一个寄存器标致
reg          read_next;       //处于读下一个寄存器的过程
reg          link_error;      //链路断开或者自协商未完成
reg  [2:0]   flow_cnt;        //流程控制计数器 
reg  [1:0]   speed_status;    //连接速率 //wire define
wire         pos_rst_trig;    //soft_rst_trig信号上升沿//采soft_rst_trig信号上升沿
assign pos_rst_trig = ~rst_trig_d1 & rst_trig_d0;
//未连接或连接失败时led赋值00
// 01:10Mbps  10:100Mbps  11:1000Mbps 00:其他情况
assign led = link_error ? 2'b00: speed_status;
//对soft_rst_trig信号延时打拍
always @(posedge clk or negedge rst_n) beginif(!rst_n) beginrst_trig_d0 <= 1'b0;rst_trig_d1 <= 1'b0;endelse beginrst_trig_d0 <= soft_rst_trig;rst_trig_d1 <= rst_trig_d0;end
end//定时计数
always @(posedge clk or negedge rst_n) beginif(!rst_n) begintimer_cnt <= 1'b0;timer_done <= 1'b0;endelse beginif(timer_cnt == 24'd1_000_000 - 1'b1) begintimer_done <= 1'b1;timer_cnt <= 1'b0;endelse begintimer_done <= 1'b0;timer_cnt <= timer_cnt + 1'b1;endend
end    //根据软复位信号对MDIO接口进行软复位,并定时读取以太网的连接状态
always @(posedge clk or negedge rst_n) beginif(!rst_n) beginflow_cnt <= 3'd0;rst_trig_flag <= 1'b0;speed_status <= 2'b00;op_exec <= 1'b0; op_rh_wl <= 1'b0; op_addr <= 1'b0;       op_wr_data <= 1'b0; start_next <= 1'b0; read_next <= 1'b0; link_error <= 1'b0;endelse beginop_exec <= 1'b0; if(pos_rst_trig)                      rst_trig_flag <= 1'b1;             //拉高软复位触发标志case(flow_cnt)2'd0 : beginif(rst_trig_flag) begin        //开始对MDIO接口进行软复位op_exec <= 1'b1; op_rh_wl <= 1'b0; op_addr <= 5'h00; op_wr_data <= 16'h9140;    // Bit[15]=1'b1,表示软复位flow_cnt <= 3'd1;endelse if(timer_done) begin      //定时完成,获取以太网连接状态op_exec <= 1'b1; op_rh_wl <= 1'b1; op_addr <= 5'h01; flow_cnt <= 3'd2;endelse if(start_next) begin       //开始读下一个寄存器,获取以太网通信速度op_exec <= 1'b1; op_rh_wl <= 1'b1; op_addr <= 5'h11;flow_cnt <= 3'd2;start_next <= 1'b0; read_next <= 1'b1; endend    2'd1 : beginif(op_done) begin              //MDIO接口软复位完成flow_cnt <= 3'd0;rst_trig_flag <= 1'b0;endend2'd2 : begin                       if(op_done) begin              //MDIO接口读操作完成if(op_rd_ack == 1'b0 && read_next == 1'b0) //读第一个寄存器,接口成功应答,flow_cnt <= 3'd3;                      //读第下一个寄存器,接口成功应答else if(op_rd_ack == 1'b0 && read_next == 1'b1)begin read_next <= 1'b0;flow_cnt <= 3'd4;endelse beginflow_cnt <= 3'd0;endend    end2'd3 : begin                     flow_cnt <= 3'd0;          //链路正常并且自协商完成if(op_rd_data[5] == 1'b1 && op_rd_data[2] == 1'b1)beginstart_next <= 1;link_error <= 0;endelse beginlink_error <= 1'b1;  end           end3'd4: beginflow_cnt <= 3'd0;if(op_rd_data[15:14] == 2'b10)speed_status <= 2'b11; //1000Mbpselse if(op_rd_data[15:14] == 2'b01) speed_status <= 2'b10; //100Mbps else if(op_rd_data[15:14] == 2'b00) speed_status <= 2'b01; //10Mbpselsespeed_status <= 2'b00; //其他情况  endendcaseend    
end    endmodule

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/238044.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

树的重心(dfs深度搜索)

树的重心 原题链接&#xff1a;846. 树的重心 - AcWing题库 邻接表存储树图 模板代码 void add(int a, int b){e[id] b,ne[id] h[a], h[a] id; }dfs 搜索树 模板代码 void dfs(int u){f[u] true;for(int i h[u]; i!-1; i ne[i]){int j e[i];if(!f[j])dfs(j);} }整体…

理解AI思维链:AI领域的核心概念及其意义

理解AI思维链&#xff1a;AI领域的核心概念及其意义 引言AI思维链的定义AI思维链的重要性实际应用案例分析面临的挑战与未来展望结语 引言 在这个日益由数据驱动的时代&#xff0c;人工智能&#xff08;AI&#xff09;已经成为科技领域的一颗耀眼的明星&#xff0c;其影响力遍…

java UDP编程

UDP协议是一个不安全、不连续的&#xff0c;把数据发送出去之后就结束了&#xff0c;根本不管对方有没有接收到。 快递员&#xff1a;DatagramSocket 包裹&#xff1a;DatagramPacket 原理就是将数据以及对方的信息都放到包裹里面&#xff0c;然后让快递员发送给对应的人。…

(八)STM32 USART —— 串口通讯

目录 1. 串口通讯协议简介 1.1 物理层 1.1.1 电平标准 1&#xff09;TTL 电平 2&#xff09;RS-232 电平 3&#xff09;RS-485 电平 4&#xff09;CAN 总线电平 1.1.2 USB 和 串口 的区分 1.1.3 RS-232 信号线 1.2 协议层 1&#xff09;波特率 2&#xff09;通讯…

负载均衡:一致性哈希解决了哪些问题?

在业务开发中&#xff0c;缓存服务和其他数据服务一样&#xff0c;需要满足高可用性&#xff0c;而高可用最常用的手段就是集群扩展。 缓存的集群高可用 目前 Redis 流行的集群方案有 官方 Cluster 方案、twemproxy 代理方案、哨兵模式、Codis 等方案&#xff0c;关于这几种方…

Java 自定义泛型

1、接口的泛型 例如List<数据类型>&#xff0c;在创建接口的时候可以通过传不同的类型&#xff0c;进行使用。 如果需要对一些类型进行一些相同的类似于增删改查的操作&#xff0c;那么可以用泛型来简化&#xff0c;只需要将需要操作的类型传入即可。 需要注意的是泛型…

阿里云赵大川:弹性计算推理解决方案拯救 AIGC 算力危机

云布道师 本篇文章围绕弹性计算推理解决方案 DeepGPU 实例如何支持 Stable Diffusion 文生图推理、Stable Diffusion 推理演示示例等相关话题展开。 赵大川 阿里云弹性计算高级技术专家 GPU 云服务器推理解决方案的提出背景 随着 AIGC 时代的到来&#xff0c;两个重要应用应…

js如何调用iframe页面里的方法

document.getElementById("iframeID").contentWindow.子级页面方法(); <body><h3>父页面</h3><iframe id"iframebb" src"b.html" ></iframe><br><script>function ff(){alert("这里是父页面ff的…

IDEA版SSM入门到实战(Maven+MyBatis+Spring+SpringMVC) -SpringMVC @RequestMapping详解

第一章 RequestMapping详解 RequestMapping注解作用&#xff1a;为指定的类或方法设置相应URL 1.1 RequestMapping注解位置 书写在类上面 作用&#xff1a;为当前类设置映射URL注意&#xff1a;不能单独使用&#xff0c;需要与方法上的RequestMapping配合使用 书写在方法上面 …

vi和vim的区别

目录 一、前言 二、vi/vim 的介绍 三、Vi/Vim 常见指令 四、vi和vim的区别 一、前言 写这篇文章的目的&#xff0c;是为了告诉大家我们如果要在终端下对文本进行编辑和修改可以使用vim编辑器。 Ubuntu 自带了 VI 编辑器&#xff0c;但是 VI 编辑器对于习惯了 Windows 下进…

Python办公自动化 – 日志分析和自动化FTP操作

Python办公自动化 – 日志分析和自动化FTP操作 以下是往期的文章目录&#xff0c;需要可以查看哦。 Python办公自动化 – Excel和Word的操作运用 Python办公自动化 – Python发送电子邮件和Outlook的集成 Python办公自动化 – 对PDF文档和PPT文档的处理 Python办公自动化 – 对…

55 回溯算法解黄金矿工问题

问题描述&#xff1a;你要开发一座金矿&#xff0c;地质学家已经探明了这座金矿中的资源分布&#xff0c;并用大小为m*n的网格grid进行了标注&#xff0c;每个单元格中的整数就表示这一单元格中的黄金数量&#xff1b;如果单元格是空的&#xff0c;那么就是0&#xff0c;为了使…

【pentaho】kettle读取Hive表不支持bigint和timstamp类型解决。

一、bigint类型 报错: Unable to get value BigNumber(16) from database resultset显示kettle认为此应该是decimal类型(kettle中是TYPE_BIGNUMBER或称BigNumber)&#xff0c;但实际hive数据库中是big类型。 修改kettle源码解决&#xff1a; kettle中java.sql.Types到kettle…

MFC使用高速绘图控件high-speed Charting Control绘制柱形图

1. 创建MFC单文档工程BarChartDemo。 2. 在工程文件夹下新建文件夹ChartCtrl,将ChartCtrl源码放入,如下图所示。在工程中添加这些项,项目——添加——现有项,全部添加。 3. 添加一个对话框,ID为IDD_DLG_BAR,类名为CBarDlg。 4. 在对话框中添加Custom Control控件,将控…

【SpringBoot应用篇】【AOP+注解】SpringBoot+SpEL表达式基于注解实现权限控制

【SpringBoot应用篇】【AOP注解】SpringBootSpEL表达式基于注解实现权限控制 Spring SpEL基本表达式类相关表达式表达式模板 SpEL表达式实现权限控制PreAuthAuthFunPreAuthAspectUserControllerSpelParserUtils Spring SpEL Spring 表达式语言 SpEL 是一种非常强大的表达式语言…

cka从入门到放弃

无数次想放弃&#xff0c;最后选择了坚持 监控pod日志 监控名为 foobar 的 Pod 的日志&#xff0c;并过滤出具有 unable-access-website 信息的行&#xff0c;然后将 写入到 /opt/KUTR00101/foobar # 解析 监控pod的日志&#xff0c;使用kubectl logs pod-name kubectl logs…

OSPF面试总结

OSPF 基本特点 属于IGP、LS支持无类域间路由没有环路&#xff08;区域内运行LS、区域间是DV,所以所有的区域要和区域0相连&#xff09;收敛速度快使用组播发送数据 224.0.0.5、224.0.0.6 什么时候用224.0.0.5&#xff1f;支持多条等价路由支持协议报文认证 OSPF路由的计算过程…

Pytorch:torch.nn.utils.clip_grad_norm_梯度截断_解读

torch.nn.utils.clip_grad_norm_函数主要作用&#xff1a; 神经网络深度逐渐增加&#xff0c;网络参数量增多的时候&#xff0c;容易引起梯度消失和梯度爆炸。对于梯度爆炸问题&#xff0c;解决方法之一便是进行梯度剪裁torch.nn.utils.clip_grad_norm_&#xff08;&#xff09…

CMD中文名称修改

会引发的问题 1. jupyter notebook运行出现Bad file descriptor (bundled\zeromq\src\epoll.cpp:100) 2. 用Anaconda或pycharm运行jupyter notebook时候&#xff0c;创建ipynb文件没一会儿就开始报错,且没法运行代码 3. 使用opencv时报错&#xff0c;opencv不支持中文路径&…

Python 爬虫之下载视频(二)

爬取某Y的视频链接和标题 文章目录 爬取某Y的视频链接和标题前言一、基本思路二、程序解析阶段三、程序处理阶段总结 前言 这篇内容就简单给大家写个如何从网页上爬取某B主 主页 页面上所有的视频链接和视频标题。 这篇是基础好好看&#xff0c;下篇会根据这篇的结果做一个批…