【项目 计网2】4.4网络模型 4.5协议 4.6网络通信的过程

文章目录

    • 4.4网络模型
      • OSI七层参考模型
      • TCP/IP四层模型(常用)
      • 简介
      • 四层介绍
    • 4.5协议
      • 简介
      • 常见协议
      • UDP协议
      • TCP协议
      • IP协议
      • 以太网帧协议(MAC地址封装)
      • ARP协议(IP->MAC)
    • 4.6网络通信的过程
      • 封装
      • 分用


4.4网络模型

OSI七层参考模型

七层模型,亦称 OSI(Open System Interconnection)参考模型,即开放式系统互联。参考模型是国际标准化组织(ISO)制定的一个用于计算机或通信系统间互联的标准体系,一般称为 OSI 参考模型或七层模型。
它是一个七层的、抽象的模型体,不仅包括一系列抽象的术语或概念,也包括具体的协议。
在这里插入图片描述

  1. 物理层:主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。它的主要作用是传输比特流(就是由1、0转化为电流强弱来进行传输,到达目的地后再转化为1、0,也就是我们常说的数模转换与模数转换)。这一层的数据叫做比特。

  2. 数据链路层:建立逻辑连接、进行硬件地址寻址、差错校验等功能。定义了如何让格式化数据以帧为单位进行传输,以及如何让控制对物理介质的访问。将比特组合成字节进而组合成帧,用MAC地址访问介质。

  3. 网络层:进行逻辑地址寻址,在位于不同地理位置的网络中的两个主机系统之间提供连接和路径选择。Internet的发展使得从世界各站点访问信息的用户数大大增加,而网络层正是管理这种连接的层。

  4. 传输层:定义了一些传输数据的协议和端口号( WWW 端口 80 等),如:TCP(传输控制协议,传输效率低,可靠性强,用于传输可靠性要求高,数据量大的数据),UDP(用户数据报协议,与TCP 特性恰恰相反,用于传输可靠性要求不高,数据量小的数据,如 QQ 聊天数据就是通过这种方式传输的)。 主要是将从下层接收的数据进行分段和传输,到达目的地址后再进行重组。常常把这一层数据叫做段。

  5. 会话层:通过传输层(端口号:传输端口与接收端口)建立数据传输的通路。主要在你的系统之间发起会话或者接受会话请求。

  6. 表示层:数据的表示、安全、压缩。主要是进行对接收的数据进行解释、加密与解密、压缩与解压缩等(也就是把计算机能够识别的东西转换成人能够能识别的东西(如图片、声音等)。

  7. 应用层:网络服务与最终用户的一个接口。这一层为用户的应用程序(例如电子邮件、文件传输和终端仿真)提供网络服务。

TCP/IP四层模型(常用)

简介

现在 Internet(因特网)使用的主流协议族是 TCP/IP 协议族,它是一个分层、多协议的通信体系。TCP/IP协议族是一个四层协议系统,自底而上分别是数据链路层、网络层、传输层和应用层。每一层完成不同的功能,且通过若干协议来实现,上层协议使用下层协议提供的服务
在这里插入图片描述
TCP/IP 协议在一定程度上参考了 OSI 的体系结构。OSI 模型共有七层,从下到上分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。但是这显然是有些复杂的,所以在 TCP/IP 协议中,它们被简化为了四个层次。
(1)应用层、表示层、会话层三个层次提供的服务相差不是很大,所以在 TCP/IP 协议中,它们被合并为应用层一个层次。
(2)由于传输层和网络层在网络协议中的地位十分重要,所以在 TCP/IP 协议中它们被作为独立的两个层次。
(3)因为数据链路层和物理层的内容相差不多,所以在 TCP/IP 协议中它们被归并在网络接口层一个层次里。只有四层体系结构的 TCP/IP 协议,与有七层体系结构的 OSI 相比要简单了不少,也正是这样,TCP/IP 协议在实际的应用中效率更高,成本更低。
在这里插入图片描述

四层介绍

  1. 应用层:应用层是 TCP/IP 协议的第一层,是直接为应用进程提供服务的。
    (1)对不同种类的应用程序它们会根据自己的需要来使用应用层的不同协议,邮件传输应用使用了 SMTP 协议、万维网应用使用了 HTTP 协议、远程登录服务应用使用了有 TELNET 协议。
    (2)应用层还能加密、解密、格式化数据。
    (3)应用层可以建立或解除与其他节点的联系,这样可以充分节省网络资源。

  2. 传输层:作为 TCP/IP 协议的第二层,运输层在整个 TCP/IP 协议中起到了中流砥柱的作用。且在运输层中, TCP 和 UDP 也同样起到了中流砥柱的作用。

  3. 网络层:网络层在 TCP/IP 协议中的位于第三层。在 TCP/IP 协议中网络层可以进行网络连接的建立和终止以及 IP 地址的寻找等功能。

  4. 网络接口层:在 TCP/IP 协议中,网络接口层位于第四层。由于网络接口层兼并了物理层和数据链路层所以,网络接口层既是传输数据的物理媒介,也可以为网络层提供一条准确无误的线路。

4.5协议

简介

协议,网络协议的简称,网络协议是通信计算机双方必须共同遵从的一组约定。如怎么样建立连接、怎么样互相识别等。只有遵守这个约定,计算机之间才能相互通信交流。它的三要素是:语法、语义、时序。
为了使数据在网络上从源到达目的,网络通信的参与方必须遵循相同的规则,这套规则称为协议(protocol),它最终体现为在网络上传输的数据包的格式。
协议往往分成几个层次进行定义,分层定义是为了使某一层协议的改变不影响其他层次的协议。

在这里插入图片描述

常见协议

应用层常见的协议有:FTP协议(File Transfer Protocol 文件传输协议)、HTTP协议(Hyper Text Transfer Protocol 超文本传输协议)、NFS(Network File System 网络文件系统)。(超文本:超出文本。还有图片视频等)SSH协议:
传输层常见协议有:TCP协议(Transmission Control Protocol 传输控制协议)、UDP协议(User Datagram Protocol 用户数据报协议)。
网络层常见协议有:IP 协议(Internet Protocol 因特网互联协议)、ICMP 协议(Internet Control Message Protocol 因特网控制报文协议)、IGMP 协议(Internet Group Management Protocol 因特网组管理协议)。
网络接口层常见协议有:ARP协议(Address Resolution Protocol 地址解析协议:IP->mac)、RARP协议(Reverse Address Resolution Protocol 反向地址解析协议)。

UDP协议

在这里插入图片描述
首部:0-32位,4字节。两个32位,8字节。
1. 源端口号:发送方端口号
2. 目的端口号:接收方端口号
3. 长度:UDP用户数据报的长度,最小值是8(仅有首部)
4. 校验和:检测UDP用户数据报在传输中是否有错,有错就丢弃

TCP协议

在这里插入图片描述

  1. 源端口号:发送方端口号
  2. 目的端口号:接收方端口号
  3. 序列号:本报文段的数据的第一个字节的序号(?)是每个传输数据字节的序号吧
  4. 确认序号:期望收到对方下一个报文段的第一个数据字节的序号
  5. 首部长度(数据偏移):TCP 报文段的数据起始处距离 TCP 报文段的起始处有多远,即首部长度。单位:32位,即以 4 字节为计算单位
  6. 保留:占 6 位,保留为今后使用,目前应置为 0
  7. 紧急 URG :此位置 1 ,表明紧急指针字段有效,它告诉系统此报文段中有紧急数据,应尽快传送
  8. 确认 ACK:仅当 ACK=1 时确认号字段才有效,TCP 规定,在连接建立后所有传达的报文段都必须把 ACK 置1
  9. 推送 PSH:当两个应用进程进行交互式的通信时,有时在一端的应用进程希望在键入一个命令后立即就能够收到对方的响应。在这种情况下,TCP 就可以使用推送(push)操作,这时,发送方TCP 把 PSH 置 1,并立即创建一个报文段发送出去,接收方收到 PSH = 1 的报文段,就尽快地(即“推送”向前)交付给接收应用进程,而不再等到整个缓存都填满后再向上交付
  10. 复位 RST:用于复位相应的 TCP 连接
  11. 同步 SYN:仅在三次握手建立 TCP 连接时有效。当 SYN = 1 而 ACK = 0 时,表明这是一个连接请求报文段,对方若同意建立连接,则应在相应的报文段中使用 SYN = 1 和 ACK = 1。因此,SYN 置1 就表示这是一个连接请求或连接接受报文
  12. 终止 FIN:用来释放一个连接。当 FIN = 1 时,表明此报文段的发送方的数据已经发送完毕,并要求释放运输连接
  13. 窗口:指发送本报文段的一方的接收窗口(而不是自己的发送窗口)
  14. 校验和:校验和字段检验的范围包括首部和数据两部分,在计算校验和时需要加上 12 字节的伪头部
  15. 紧急指针:仅在 URG = 1 时才有意义,它指出本报文段中的紧急数据的字节数(紧急数据结束后就是普通数据),即指出了紧急数据的末尾在报文中的位置,注意:即使窗口为零时也可发送紧急数据
  16. 选项:长度可变,最长可达 40 字节,当没有使用选项时,TCP 首部长度是 20 字节
    (后面还会介绍)

IP协议

在这里插入图片描述

  1. 版本:IP 协议的版本。通信双方使用过的 IP 协议的版本必须一致,目前最广泛使用的 IP 协议版本号为 4(即IPv4)
  2. 首部长度:单位是 32 位(4 字节)
  3. 服务类型:一般不适用,取值为 0
  4. 总长度:指首部加上数据的总长度,单位为字节
  5. 标识(identification):IP 软件在存储器中维持一个计数器,每产生一个数据报,计数器就加 1,并将此值赋给标识字段
  6. 标志(flag):目前只有两位有意义。
    标志字段中的最低位记为 MF。MF = 1 即表示后面“还有分片”的数据报。MF = 0 表示这已是若干数据报片中的最后一个。
    标志字段中间的一位记为 DF,意思是“不能分片”,只有当 DF = 0 时才允许分片
  7. 片偏移:指出较长的分组在分片后,某片在源分组中的相对位置,也就是说,相对于用户数据段的起点,该片从何处开始。片偏移以 8 字节为偏移单位。
  8. 生存时间:TTL,表明是数据报在网络中的寿命,即为“跳数限制”,由发出数据报的源点设置这个字段。路由器在转发数据之前就把 TTL 值减一,当 TTL 值减为零时,就丢弃这个数据报。(比如一开始是64,如果经过64个路由器还没送到,那这个值就会被丢弃)
  9. 协议:指出此数据报携带的数据时使用何种协议,以便使目的主机的 IP 层知道应将数据部分上交给哪个处理过程,常用的 ICMP(1),IGMP(2),TCP(6),UDP(17),IPv6(41)(IP来的数据是给TCP还是UDP还是其他协议处理,6就是给TCP)
  10. 首部校验和:只校验数据报的首部,不包括数据部分。
  11. 源地址:发送方 IP 地址
  12. 目的地址:接收方 IP 地址

以太网帧协议(MAC地址封装)

在这里插入图片描述类型:0x800表示 IP、0x806表示 ARP、0x835表示 RARP

ARP协议(IP->MAC)

通过IP地址查找MAC地址(RARP:通过MAC查找IP)
在这里插入图片描述

  1. 硬件类型:1 表示 MAC 地址
  2. 协议类型:0x800 表示 IP 地址,表示给上一层谁去使用
  3. 硬件地址长度:6(MAC是6字节)注意!第三个格子保存的是硬件地址的”长度“大小,也就是6。而不是6字节的地址。
  4. 协议地址长度:4(IP地址是4字节)
  5. 操作:1 表示 ARP 请求,2 表示 ARP 应答,3 表示 RARP 请求,4 表示 RARP 应答

理解ARP协议具体是怎样工作的:
在这里插入图片描述A请求得知B的MAC地址。要先组一个ARP请求包。其中 ”目的端以太网地址“ 还不知道,所以是全0(全f也可以)(上图倒数第二个格子)。

ARP请求获取目的端MAC地址,填充00:00:00:00:00:00.
以太网ARP请求报文28字节,需封装以太网帧的头。ARP请求不是给特定的地址发,而是以广播的形式ff:ff:ff:ff:ff:ff给当前局域网内所有的机器发送,每个机器通过目的IP来判断确定是否给自己发,对应机器应答(以太网帧头+ARP应答报文)(单播)。

4.6网络通信的过程

封装

上层协议是如何使用下层协议提供的服务的呢?其实这是通过封装(encapsulation)实现的。应用程序数据在发送到物理网络上之前,将沿着协议栈从上往下依次传递。每层协议都将在上层数据的基础上加上自己的头部信息(有时还包括尾部信息),以实现该层的功能,这个过程就称为封装。
在这里插入图片描述

分用

当帧到达目的主机时,将沿着协议栈自底向上依次传递。各层协议依次处理帧中本层负责的头部数据,以获取所需的信息,并最终将处理后的帧交给目标应用程序。这个过程称为分用(demultiplexing)。分用是依靠头部信息中的类型字段实现。
在这里插入图片描述在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/23780.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Stable Diffusion 硬核生存指南:WebUI 中的 GFPGAN

本篇文章聊聊 Stable Diffusion WebUI 中的核心组件,强壮的人脸图像面部画面修复模型 GFPGAN 相关的事情。 写在前面 本篇文章的主角是开源项目 TencentARC/GFPGAN,和上一篇文章《Stable Diffusion 硬核生存指南:WebUI 中的 CodeFormer》提…

k8s存储卷

目录 一、为什么要存储卷?二、emptyDir存储卷三、hostPath存储卷四、 nfs共享存储卷五、PVC 和 PV5.1 PV和PVC之间的相互作用遵循的生命周期5.2 PV 的状态5.3 一个PV从创建到销毁的具体流程 六、静态创建pv和pvc资源由pod运用过程6.1 在NFS主机上创建共享目录&#…

03 制作Ubuntu启动盘

1 软碟通 我是用软碟通制作启动盘。安装软碟通时一定要把虚拟光驱给勾选上,其余两个可以看你心情。 2 镜像文件 我使用清华镜像网站找到的Ubuntu镜像文件。 Index of /ubuntu-releases/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 请自己选择镜像…

K8S系列文章之 使用Kind部署K8S 并发布服务

简单介绍 kind 即 Kubernetes In Docker,顾名思义,就是将 k8s 所需要的所有组件,全部部署在一个docker容器中,是一套开箱即用的 k8s 环境搭建方案。使用 kind 搭建的集群无法在生产中使用,但是如果你只是想在本地简单…

队列中offer,add;poll,remove;peek,element之间的区别

offer和add的区别 offer() 和 add() 都是向队列中加入新项。 一些队列有大小限制,因此如果想在一个满的队列中加入一个新项,多出的项就会被拒绝。 这时新的offer方法就可以起作用了。它不是对调用add()方法抛出一个unchecked异常,而只是得…

初阶C语言——特别详细地介绍函数

系列文章目录 第一章 “C“浒传——初识C语言(更适合初学者体质哦!) 第二章 详细认识分支语句和循环语句以及他们的易错点 第三章 初阶C语言——特别详细地介绍函数 目录 系列文章目录 前言 一、函数是个什么鬼东西? 二、C语…

css中的bfc是什么?

什么bfc? BFC(Block Formatting Context)块级 格式化 上下文。 BFC就是页面上的一个隔离的独立盒子,容器里面的子元素和外面的元素不会相互影响。 为什么要bfc? bfc是我们去主动触发的,并不是自动就存在的,它是帮助我们解决cs…

【雕爷学编程】MicroPython动手做(28)——物联网之Yeelight 2

知识点:什么是掌控板? 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片,支持WiFi和蓝牙双模通信,可作为物联网节点,实现物联网应用。同时掌控板上集成了OLED…

数据库与数据仓库的区别及关系

数据库与数据仓库的区别及关系 数据库数据仓库异同差异联系例子 数据库 数据库是结构化信息或数据的有序集合,一般以电子形式存储在计算机系统中。通常由数据库管理系统 (DBMS) 来控制。它是一个长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集…

任务 13、MidJourney种子激发极致创作,绘制震撼连贯画作

13.1 任务概述 通过本次实验任务,学员将深入了解Midjourney种子的概念和重要性,以及种子对生成图像的影响。他们将学会在Midjourney平台中设置种子值并调整其参数,以达到所需的效果。此外,任务还详细介绍了Midjourney V4.0版本中…

openSUSE安装虚拟化 qemu kvm

1) 第一种:图形界面yast安装虚拟化 左下角开始菜单搜索yast 点一下就能安装,是不是很简单呢 2)第二种: 命令行安装 网上关于openSUSE安装qemu kvm的教程比较少,可以搜索centos7 安装qemu kvm的教程,然后…

ZAFUACM - 23.8.5个人赛补题

文章目录 A - Lucky Conversion题意思路代码 B - Constanzes Machine题意思路代码 C - Maximum Median题意思路代码 D - Remove Extra One题意思路代码 E - A Determined Cleanup题意思路代码 F - Minimal k-covering A - Lucky Conversion 原题链接 题意 给出两个只包含“4…

vue-baidu-map-3x 使用记录

在 Vue3 TypeScript 项目中,为了采用 标签组件 的方式,使用百度地图组件,冲浪发现了一个开源库 ovo,很方便!喜欢的朋友记得帮 原作者 点下 star ~ vue-baidu-map-3xbaidu-map的vue3/vue2版本(支持v2.0、v…

《面试1v1》ElasticSearch 和 Lucene

🍅 作者简介:王哥,CSDN2022博客总榜Top100🏆、博客专家💪 🍅 技术交流:定期更新Java硬核干货,不定期送书活动 🍅 王哥多年工作总结:Java学习路线总结&#xf…

DLA 神经网络的极限训练方法:gradient checkpointing

gradient checkpointing 一般来说,训练的过程需要保存中间结果(不管是GPU还是CPU)。前向传播根据输入(bottom_data)计算输出(top_data),后向传播由top_diff计算bottom_diff(如果某个变量打开梯度进行训练的话&#xff…

5个顶级的开源有限元分析软件

每当我参加数值分析课程的教学时,都会回顾有限元方法的基础知识,很自然地就会出现使用哪种软件的问题。 以下讨论基于三个基本考虑: 在实际应用中,很少有人从头开始编写 FEM 代码。商业 FEM 软件通常在某些预定义的情况下非常易于…

Pandas操作Excel

Pandas 是 Python 语言的一个扩展程序库,用于数据分析。 菜鸟教程:https://www.runoob.com/pandas/pandas-tutorial.html 读取Excel pd.read_excel(path,sheet_name,header) path:excel文件路径sheet_name:读取的sheet&#xff0…

3.netty和protobuf

1.ChannelGroup可以免遍历由netty提供,覆盖remove方法即可触发删除channel\ 2.群聊私聊 13.群聊私聊简单原理图 3.netty心跳检测机制,客户端对服务器有没有读写(读,写空闲) //IdleStateHandler(3,5,7,TimeUnite.SECONDS)是netty提供的检测状态的处理器,也加到pipeline,读,写,…

浅析 C 语言的共用体、枚举和位域

前言 最近在尝试阅读一些系统库的源码,但是其中存在很多让我感到既熟悉又陌生的语法。经过资料查阅,发现是 C 语言中的共用体和位域。于是,趁着课本还没有扔掉,将一些相关的知识点记录在本文。 文章目录 前言共用体 (union)枚举…

网络开发-IO模型

基本概念 I/O即数据的读取&#xff08;接收&#xff09;或写入&#xff08;发送&#xff09;操作 通常用户进程中的一个完整I/O分为两个阶段 用户进程空间<-->内核空间内核空间<-->设备空间&#xff08;磁盘、网卡等&#xff09; I/O分为内存I/O、网络I/O和磁盘…