基于深度学习的高精度道路瑕疵检测系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于深度学习的高精度道路瑕疵(裂纹(Crack)、检查井(Manhole)、网(Net)、裂纹块(Patch-Crack)、网块(Patch-Net)、坑洼块(Patch-Pothole)、坑洼(Pothole)等)检测系统可用于日常生活中或野外来检测与定位道路瑕疵目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括道路瑕疵训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本道路瑕疵检测系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度道路瑕疵检测模型,再搭配上Pyside6库写出界面系统,完成目标检测页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载完整文件到自己电脑上,然后使用cmd打开到文件目录
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。

在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。
在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的道路瑕疵数据集手动标注了(裂纹(Crack)、检查井(Manhole)、网(Net)、裂纹块(Patch-Crack)、网块(Patch-Net)、坑洼块(Patch-Pothole)、坑洼(Pothole)和其他(other))这八个类别,数据集总计6000张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的道路瑕疵检测数据集包含训练集4822张图片,验证集1178张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的道路瑕疵数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
下图展示了本博文在使用YOLOv5模型对道路瑕疵数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。另外本博文的PDF与更多的目标检测系统请关注笔者的微信公众号 BestSongC (原Nuist计算机视觉与模式)来获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/2371.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】模板进阶—非类型模板参数、模板特化及模板的分离编译

🚀 作者简介:一名在后端领域学习,并渴望能够学有所成的追梦人。 🚁 个人主页:不 良 🔥 系列专栏:🛸C 🛹Linux 📕 学习格言:博观而约取&#xff0…

什么是云应用程序?

应用程序优先的云服务的日益普及导致应用程序与云服务的融合程度比以前更深。应用程序和云之间的运行时边界正在从虚拟机转移到容器和函数。集成边界正在从仅访问数据库和消息代理转向应用程序的机械部分混合并在云中运行的边界。在这个最终架构中,应用程序是“云绑…

pwm呼吸灯

文章目录 一、呼吸灯二、代码实现三、引脚分配 一、呼吸灯 呼吸灯是指灯光在微电脑的控制之下完成由亮到暗的逐渐变化,使用开发板上的四个led灯实现1s间隔的呼吸灯。 二、代码实现 c module pwm_led( input clk ,input rst_n ,output reg [3:0] led ); …

photoshop制作法线和凹凸贴图

做个选区 Ctrlj 法线贴图 生成凹凸贴图

Spring框架的创建和使用

目录 Spring框架概述 什么是Spring框架 什么是容器 什么是IoC容器 Spring的核心功能 IoC容器和普通程序开发的区别 DI Spring项目的创建和使用 Spring项目创建 创建一个maven项目 添加Spring框架支持 添加一个启动类 Spring项目的使用 存储Bean对象 获取并使用B…

应用级监控方案Spring Boot Admin

1.简介 Spring Boot Admin为项目常用的监控方式,可以动态的监控服务是否运行和运行的参数,如类的调用情况、流量等。其中分为server与client: server: 提供展示UI与监控服务。client:加入server,被监控的…

vue3,elementPlus和自己封装,点击 新增添加表单,删除表单,提交数据

ElementPlus下的form也有新增表单 如果你写H5等没找到合适的 自己也可以进行封装 实现3个代码讲解:1:ElementPlus的代码 2:自己书写的代码 3:自己把2的代码进行封装 1:ElementPlus的运行效果 点击提交 1:ElementPlus…

Python教程(3)——python开发工具vscode的下载与安装

Python的开发工具有很多款,很多都是非常好用的,其中vscode作为其中一款Python的开发工具,是非常轻量级的,今天我们来介绍一下vs code的下载与安装。 vscode的下载与安装 首先需要到vscode的官网,这个谷歌或者百度一下…

VSCode 注释后光标快速定位下一行

VSCode默认用 Ctrl / 注释一行时,光标停留在该行中。下面介绍如何注释后,光标会自动移动到下一行。 1.【View】 ->【Extensions】->【查找并安装Multi-command 扩展】 2.【File 】 -> 【Preferences 】->【Keyboard Shortcuts】&#xff08…

【人工智能】xAI——“X宇宙”又增添了一位新成员

个人主页:【😊个人主页】 🌞热爱编程,热爱生活🌞 文章目录 前言xAI团队成员做解开宇宙本质的AI 前言 有人问他,xAI公司是干啥的?马斯克的回答引用了其偶像、科幻作家道格拉斯・亚当斯的话&…

Python实现将pdf,docx,xls,doc,wps,zip,xlsx,ofd链接下载并将文件保存到本地

前言 本文是该专栏的第31篇,后面会持续分享python的各种干货知识,值得关注。 在工作上,尤其是在处理爬虫项目中,会遇到这样的需求。访问某个网页或者在采集某个页面的时候,正文部分含有docx,或pdf,或xls,或doc,或wps,或ofd,或xlsx,或zip等链接。需要你使用python自…

【运维小知识】(四)——linux常用命令

运维专栏:运维小知识 目录 1.🍁🍁用mv命令修改文件名 2.🍃🍃创建及删除文件夹即文件夹下所有文件 3.🍂🍂移动文件夹并重命名 4.🌿🌿复制文件 5.🍄&#x…

Python 算法基础篇之字符串操作:索引、切片、常用方法

Python 算法基础篇之字符串操作:索引、切片、常用方法 引言 1. 字符串的概念和创建2. 字符串的索引3. 字符串的切片4. 字符串的常用方法 a ) 查找子字符串 b ) 替换子字符串 c ) 拆分和连接字符串 总结 引言 字符串是一种常见的数据类型,在 Python 中对…

ARM微控制器 AM2432BSEFHIALXR、AM2432BSFFHIALV技术参数(32位MCU)

1、AM2432BSEFHIALXR 32位MCU采用293引脚FCCSP封装,工作频率最高可达800MHz。该微控制器专为需要结合处理和实时通信的工业应用而构建,例如远程I/O模块和电机驱动器。 核心处理器:ARM Cortex-M4F,ARM Cortex-R5F 内核规格&#xf…

pytest 禁用警告信息(忽略警告信息输出)

如图示例代码,提示test_001这个case 存在警告 新增pytest.ini 配置文件 [pytest] filterwarnings errorignore::UserWarning

携带时间戳主动写入数据到prometheus service(可乱序、go)

使用到的github公开项目 https://github.com/castai/promwrite Prometheus版本2.45.0 拉下来装依赖,然后使用 client_test.go t.Run(“write with custom options”, func(t *testing.T) 这个测试用例里面,删掉srv初始化的部分,这个是模拟一…

本地生活直播,和电商直播有什么不一样?

直播正在成为零售业的标配,当下最新的一条赛道是“本地生活直播”。 (商家开始在美团等平台进行本地生活直播。摄影:李崧稷) 今年618,在老牌电商平台拉着无数网店,拼尽全力想要堆高销量的时候,一…

微信小程序导入微信地址

获取用户收货地址。调起用户编辑收货地址原生界面,并在编辑完成后返回用户选择的地址。 1:原生微信小程序接口使用API:wx.chooseAddress(OBJECT) wx.chooseAddress({success (res) {console.log(res.userName)console.log(res.postalCode)c…

TensorFlow模块简介

TensorFLow框架内构建了很多高层次的API,可以显著减少编写程序的代码量,其中包含众多网络结构相关函数和数据载入、数据处理的方法。 tf.data.Dataset tf.data.Dataset是TensorFlow内置的数据输入模块,提供了专门用于数据输入的多种方法&am…

【Linux】进程间通信——管道/共享内存

文章目录 1. 进程间通信2. 管道匿名管道命名管道管道的特性管道的应用:简易的进程池 3. System V共享内存共享内存的概念共享内存的结构共享内存的使用代码实现 1. 进程间通信 进程间通信(Inter-Process Communication,简称IPC)是…