YOLOv5改进 | 卷积篇 | 通过RFAConv重塑空间注意力(深度学习的前沿突破)

 一、本文介绍

本文给大家带来的改进机制是RFAConv,全称为Receptive-Field Attention Convolution是一种全新的空间注意力机制。与传统的空间注意力方法相比,RFAConv能够更有效地处理图像中的细节和复杂模式(适用于所有的检测对象都有一定的提点)。这不仅让YOLOv5在识别和定位目标时更加精准,还大幅提升了处理速度和效率。本文章深入会探讨RFAConv如何在YOLOv5中发挥作用,以及它是如何改进在我们的YOLOv5中的。我将通过案例的角度来带大家分析其有效性(结果训练结果对比图)

适用检测目标:亲测所有的目标检测均有一定的提点

推荐指数:⭐⭐⭐⭐⭐

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

实验结果对比图->

目录

 一、本文介绍

二、RFAConv结构讲解

2.1、RAFCAonv主要思想

2.2、感受野空间特征

2.3、解决参数共享问题

2.4、提高大尺寸卷积核的效率

三、RFAConv核心代码

四、手把手教你添加RFAConv和C3f_RFAConv模块

 4.1 细节修改教程

4.1.1 修改一

​4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 RFAConv的yaml文件

4.2.1 RFAConv的yaml文件一

4.2.2 RFAConv的yaml文件二

4.2.3 RFAConv的yaml文件三

4.3 RFAConv运行成功截图

4.4 推荐RFAConv可添加的位置 

五、本文总结 


二、RFAConv结构讲解

论文地址:官方论文地址

代码地址:官方代码地址


2.1、RAFCAonv主要思想

RFAConv(Receptive-Field Attention Convolution)的主要思想是将空间注意力机制与卷积操作相结合,从而提高卷积神经网络(CNN)的性能。这种方法的核心在于优化卷积核的工作方式,特别是在处理感受野内的空间特征时。以下是RFAConv的几个关键思想:

1. 感受野空间特征的重点关注:RFAConv特别关注于感受野内的空间特征,不仅仅局限于传统的空间维度。这种方法允许网络更有效地理解和处理图像中的局部区域,从而提高特征提取的精确性。

2. 解决参数共享问题:在传统的CNN中,卷积核在处理不同区域的图像时共享同样的参数,这可能限制了模型对于复杂模式的学习能力。RFAConv通过引入注意力机制,能够更灵活地调整卷积核的参数,针对不同区域提供定制化的处理。

3. 提高大尺寸卷积核的效率:对于大尺寸卷积核,仅使用标准的空间注意力可能不足以捕获所有重要的信息。RFAConv通过提供有效的注意力权重,使得大尺寸卷积核能够更有效地处理图像信息。

总结:RFAConv通过结合空间注意力和感受野特征的处理,为卷积神经网络提供了一种新的、更高效的方式来提取和处理图像特征,尤其是在处理复杂或大尺寸的输入时。

下面我来分别介绍这几点->


2.2、感受野空间特征

感受野空间特征是指卷积神经网络(CNN)中,卷积层能“看到”的输入数据的局部区域。在CNN中,每个卷积操作的输出是基于输入数据的一个小窗口,或者说是一个局部感受野。这个感受野定义了卷积核可以接触到的输入数据的大小和范围。

感受野的概念对于理解CNN如何从输入数据中提取特征是至关重要的。在网络的初级层,感受野通常很小,允许模型捕捉到细微的局部特征,如边缘和角点。随着数据通过更多的卷积层,通过层层叠加,感受野逐渐扩大,允许网络感知到更大的区域,捕捉到更复杂的特征,如纹理和对象的部分。

在CNN的上下文中,感受野空间特征指的是每个卷积操作能够感知的输入图像区域中的特征。这些特征可以包括颜色、形状、纹理等基本视觉元素。在传统的卷积网络中,感受野通常是固定的,并且每个位置的处理方式都是相同的。但是,如果网络能够根据每个区域的不同特点来调整感受野的处理方式,那么网络对特征的理解就会更加精细和适应性更强。

上图展示了一个3x3的卷积操作。在这个操作中,特征是通过将卷积核与同样大小的感受野滑块相乘然后求和得到的。具体来说,输入图像X上的每一个3x3的区域(即感受野)都被一个3x3的卷积核K处理。每个感受野内的元素,X_{i,j}(其中i和j表示在感受野内的位置)都与卷积核K内对应位置的权重,K_{i,j}相乘,然后这些乘积会被求和得到一个新的特征值F。这个过程在整个输入图像上滑动进行,以生成新的特征图。这种标准的卷积操作强调了局部连接和权重共享的概念,即卷积核的权重对整个输入图。

总结:在RFAConv中,感受野空间特征被用来指导注意力机制,这样模型就不仅仅关注于当前层的特定区域,而是根据输入数据的复杂性和重要性动态调整感受野。通过这种方式,RFAConv能够为不同区域和不同尺寸的感受野提供不同的处理,使得网络能够更加有效地捕捉和利用图像中的信息。


2.3、解决参数共享问题

RFAConv卷积以解决参数共享问题RFAConv通过引入注意力机制,允许网络为每个感受野生成特定的权重。这样,卷积核可以根据每个感受野内的不同特征动态调整其参数,而不是对所有区域一视同仁。

具体来说,RFAConv利用空间注意力来确定感受野中每个位置的重要性,并据此调整卷积核的权重。这样,每个感受野都有自己独特的卷积核,而不是所有感受野共享同一个核。这种方法使得网络能够更细致地学习图像中的局部特征,从而有助于提高整体网络性能。

通过这种方法,RFAConv提升了模型的表达能力,允许它更精确地适应和表达输入数据的特征,尤其是在处理复杂或多变的图像内容时。

上图展示了一个卷积操作的过程,其中卷积核参数 K_{i}通过将注意力权重 A_{i}与卷积核参数 K 相乘得到。这意味着每个感受野滑块的卷积操作都有一个独特的卷积核参数,这些参数是通过将通用的卷积核参数与特定于该位置的注意力权重相结合来获得的。

具体地说,这个过程将注意力机制与卷积核相结合,为每个感受野位置产生一个定制化的卷积核。例如,图中的 Kernel 1、Kernel 2 和 Kernel 3 分别是通过将通用卷积核参数 K 与对应的注意力权重 A_{1}​、A_{2}​ 和 A_{3}​ 相乘得到的。这种方法允许网络在特征提取过程中对不同空间位置的特征赋予不同的重要性,从而增强了模型对关键特征的捕获能力。

总结:这样的机制增加了卷积神经网络的表达能力,使得网络能够更加灵活地适应不同的输入特征,并有助于提高最终任务的性能。这是一种有效的方式来处理传统卷积操作中的参数共享问题,因为它允许每个位置的卷积核适应其处理的特定区域。


2.4、提高大尺寸卷积核的效率

RFAConv通过利用感受野注意力机制来动态调整卷积核的权重,从而为每个区域的特征提取提供了定制化的关注度。这样,即便是大尺寸卷积核,也能够更加有效地捕捉和处理重要的空间特征,而不会对不那么重要的信息分配过多的计算资源。

具体来说,RFAConv方法允许网络识别和强调输入特征图中更重要的区域,并且根据这些区域调整卷积核的权重。这意味着网络可以对关键特征进行重加权,使得大尺寸卷积核不仅能够捕捉到广泛的信息,同时也能够集中计算资源在更有信息量的特征上,从而提升了整体的处理效率和网络性能。

上图描述了感受野滑块中特征的重叠,这是在标准卷积操作中常见的现象。特征的重叠导致了注意力权重的共享问题,意味着不同的感受野可能会对相同的输入特征使用相同的注意力权重。

在图中,F_{1}​,F_{2}​,...F_{N}代表不同感受野滑块内的特征输出,它们是通过将输入特征 X 与对应的注意力权重 A 以及卷积核 K 的权重进行逐元素乘法运算后得到的。例如,F_{1} 是通过将 X_{11}乘以对应的注意力权重 A_{11}和卷积核权重 K_{1}计算得到的,以此类推。

该图强调了每个感受野滑块内的卷积操作的参数不应该完全共享,而是应该根据每个特定区域内的特征和相应的注意力权重进行调整。这种调整允许网络对每个局部区域进行更加精细的处理,能够更好地捕捉和响应输入数据的特定特征,而不是简单地对整个图像应用相同的权重。这样的方法能够提升网络对特征的理解和表示,从而改善最终的学习和预测性。

总结:通过这种方法,RFAConv提升了模型的表达能力,允许它更精确地适应和表达输入数据的特征,尤其是在处理复杂或多变的图像内容时。这种灵活的参数调整机制为提高卷积神经网络的性能和泛化能力提供了新的途径。


三、RFAConv核心代码

# 大家在使用的时候注意这个卷积设计的时候有点问题,只能当输入输出相等的来使用,否则会报错,后面我给大家准备了三种yaml文件均可运行。

import torch
from torch import nn
from einops import rearrangedef autopad(k, p=None, d=1):  # kernel, padding, dilation# Pad to 'same' shape outputsif d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):return self.act(self.conv(x))class RFAConv(nn.Module):  # 基于Unfold实现的RFAConvdef __init__(self, in_channel, out_channel, kernel_size=3):super().__init__()self.kernel_size = kernel_sizeself.unfold = nn.Unfold(kernel_size=(kernel_size, kernel_size), padding=kernel_size // 2)self.get_weights = nn.Sequential(nn.Conv2d(in_channel * (kernel_size ** 2), in_channel * (kernel_size ** 2), kernel_size=1,groups=in_channel),nn.BatchNorm2d(in_channel * (kernel_size ** 2)))self.conv = nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, padding=0, stride=kernel_size)self.bn = nn.BatchNorm2d(out_channel)self.act = nn.ReLU()def forward(self, x):b, c, h, w = x.shapeunfold_feature = self.unfold(x)  # 获得感受野空间特征  b c*kernel**2,h*wx = unfold_featuredata = unfold_feature.unsqueeze(-1)weight = self.get_weights(data).view(b, c, self.kernel_size ** 2, h, w).permute(0, 1, 3, 4, 2).softmax(-1)weight_out = rearrange(weight, 'b c h w (n1 n2) -> b c (h n1) (w n2)', n1=self.kernel_size,n2=self.kernel_size)  # b c h w k**2 -> b c h*k w*kreceptive_field_data = rearrange(x, 'b (c n1) l -> b c n1 l', n1=self.kernel_size ** 2).permute(0, 1, 3,2).reshape(b, c,h, w,self.kernel_size ** 2)  # b c*kernel**2,h*w ->  b c h w k**2data_out = rearrange(receptive_field_data, 'b c h w (n1 n2) -> b c (h n1) (w n2)', n1=self.kernel_size,n2=self.kernel_size)  # b c h w k**2 -> b c h*k w*kconv_data = data_out * weight_outconv_out = self.conv(conv_data)return self.act(self.bn(conv_out))class Bottleneck(nn.Module):# Standard bottleneckdef __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = RFAConv(c_, c2, 3)self.add = shortcut and c1 == c2def forward(self, x):return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C3_RFAConv(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

 


四、手把手教你添加RFAConv和C3f_RFAConv模块

 4.1 细节修改教程

4.1.1 修改一

我们找到如下的目录'yolov5-master/models'在这个目录下创建一个文件目录(注意是目录,因为我这个专栏会出很多的更新,这里用一种一劳永逸的方法)文件目录起名modules,然后在下面新建一个文件,将我们的代码复制粘贴进去。


​4.1.2 修改二

然后新建一个__init__.py文件,然后我们在里面添加一行代码。注意标记一个'.'其作用是标记当前目录。


4.1.3 修改三 

然后我们找到如下文件''models/yolo.py''在开头的地方导入我们的模块按照如下修改->

(如果你看了我多个改进机制此处只需要添加一个即可,无需重复添加)

​​​​


4.1.4 修改四

然后我们找到parse_model方法,按照如下修改->

到此就修改完成了,复制下面的ymal文件即可运行。


4.2 RFAConv的yaml文件

4.2.1 RFAConv的yaml文件一

下面的配置文件为我修改的RFAConv的位置,参数的位置里面什么都不用添加空着就行,大家复制粘贴我的就可以运行,同时我提供多个版本给大家,根据我的经验可能涨点的位置。

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3_RFAConv, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3_RFAConv, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3_RFAConv, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]


4.2.2 RFAConv的yaml文件二

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, RFAConv, [512]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, RFAConv, [256]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]


4.2.3 RFAConv的yaml文件三

注意此版本的我再大目标,小目标,中目标三个曾的后面添加了一个注意力机制,此版本需要显存较大,可以根据自己的需求增删,如果修改大家要注意修改Detect里面的检测层数。

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, RFAConv, [256]], #18[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 21 (P4/16-medium)[-1, 1, RFAConv, [512]], # 22[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 25 (P5/32-large)[-1, 1, RFAConv, [1024]], #26[[18, 22, 26], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

4.3 RFAConv运行成功截图

附上我的运行记录确保我的教程是可用的。 

4.4 推荐RFAConv可添加的位置 

RFAConv是一种即插即用的可替换注意力机制的模块其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入RFAConv(yaml文件一)。

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加修改后的C3_RFAConv可以帮助模型更有效地融合不同层次的特征(yaml文件二)

  3. 检测头:可以再检测头前面添加(yaml文件三)

  4. 检测头中:可以再检测头的内部添加该机制(未提供因为需要修改检测头比较麻烦,后期专栏收费后大家购买专栏之后大家会得到一个包含上百个机制的v5文件里面包含所有的改进机制)


五、本文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv5改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~)如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

 专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/235565.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

新算法!直接写: EVO-CNN-LSTM-Attention能量谷优化卷积、长短期记忆网络融合注意力机制的多变量回归预测程序

适用平台:Matlab2023版及以上 能量谷优化算法(Energy valley optimizer,EVO)是2023年提出的一种新颖的元启发式算法。EVO算法的灵感来自于宇宙中粒子的行为,特别是这些粒子的稳定性和衰变过程。大多数粒子不稳定&…

vue2 组件传递数据

向子组件传递数据通过Props 1.创建子组件 详细步骤&#xff1a; 1.在components创建子组件 2.等父组件接受到参数后通过Props来接受父组件传递过来的数据 <template><div id"app"><h2>title:{{ title }}</h2><p>tips:{{ tips }}<…

IDEA 设置 SpringBoot logback 彩色日志(附配置文件)

1、背景说明 最开始使用 SpringBoot 时&#xff0c;控制台日志是带彩色的&#xff0c;让人眼前一亮&#x1f604; 后来彩色莫名丢失&#xff0c;由于影响不大&#xff0c;一直没有处理。 2、配置彩色 最近找到了解决方法&#xff08;其实是因为自定义 logback.xml&#xff0…

java并发编程五 ReentrantLock,锁的活跃性

多把锁 一间大屋子有两个功能&#xff1a;睡觉、学习&#xff0c;互不相干。 现在小南要学习&#xff0c;小女要睡觉&#xff0c;但如果只用一间屋子&#xff08;一个对象锁&#xff09;的话&#xff0c;那么并发度很低 解决方法是准备多个房间&#xff08;多个对象锁&#xf…

GNSS技术的巧妙运用:灾害应对中的定位与救援

随着全球气候变化的加剧&#xff0c;自然灾害的频发成为当今社会面临的重大挑战之一。在灾害发生后&#xff0c;及时、准确的救援至关重要。全球导航卫星系统&#xff08;GNSS&#xff09;技术通过其卓越的定位功能&#xff0c;为灾害应对提供了独特的支持。本文将深入研究GNSS…

使用MybatisPlus置空某些指定字段

当前的MybatisPlus默认会对空实体内的字段不置空&#xff0c;所以才引出了此种方法&#xff0c;很方便简单&#xff1a; 使用 Wrappers.lambdaUpdate方法就可以解决&#xff0c;方法的源码如下&#xff1a;条件为entity内的值&#xff0c;使用lambdaUpdate去set空的值 举个例子…

11.2 设备树下的 LED 驱动

一、修改设备树文件 首先进入该目录下 /linux/atk-mpl/linux/my_linux/linux-5.4.31/arch/arm/boot/dts 打开 stm32mp157d-atk.dts 文件&#xff0c;在根节点 "/" 最后输入以下内容&#xff1a; stm32mp1_led {compatible "atkstm32mp1-led"; // 设置…

Java操作Word修订功能:启用、接受、拒绝、获取修订

Word的修订功能是一种在文档中进行编辑和审阅的功能。它允许多个用户对同一文档进行修改并跟踪这些修改&#xff0c;以便进行审查和接受或拒绝修改。修订功能通常用于团队合作、专业编辑和文件审查等场景。 本文将从以下几个方面介绍如何使用免费工具Free Spire.Doc for Java在…

机器视觉系统选型-高图像精度

图像精度 X方向系统精度&#xff08;X方向象素值&#xff09;&#xff1d; 视野范围&#xff08;X方向&#xff09; CCD芯片象素数量&#xff08;X方向&#xff09; Y方向系统精度&#xff08;Y方向象素值&#xff09;&#xff1d; 视野范围&#xff08;Y方向 CCD芯片象素数量&…

【lesson17】minishell(shell的模拟实现)

文章目录 模拟实现shell的思路具体实现一直循环&#xff08;一&#xff09;显示提示行符&#xff08;二&#xff09;获取用户输入的字符串&#xff08;三&#xff09;对字符串进行解析&#xff08;四&#xff09;创建子进程执行指令&#xff08;5&#xff09; 细节问题解决问题…

Redis第2讲——Java三种客户端(Jedis、Lettuce和Redisson)

上篇文章介绍了Redis的9种数据类型和常命令、7种数据结构和9种编码方式。但是如果想要把它应用到项目中&#xff0c;我们还需要一个redis的客户端。redis的Java客户端种类还是很多的&#xff0c;其中使用最广泛的有三种——Jedis、lettuce和redisson&#xff0c;下面我们一起来…

web前端游戏项目-雷霆战机飞机大战游戏【附源码】

文章目录 一&#xff1a;雷霆战机HTML源码&#xff1a;JS文件&#xff1a;&#xff08;1&#xff09;function.js&#xff08;2&#xff09;impact.js&#xff08;3&#xff09;move.1.1.js&#xff08;4&#xff09;script.js 二&#xff1a;飞机大战HTML源码&#xff1a;CSS源…

性能压力测试--确保企业数字化业务稳健运行

随着企业的数字化转型和依赖云计算的普及&#xff0c;软件系统的性能已经成为企业成功运营的关键因素之一。性能压力测试作为确保系统在各种条件下都能高效运行的关键步骤&#xff0c;对企业的重要性不可忽视。以下是性能压力测试对企业的几个重要方面的影响和作用&#xff1a;…

最新AI创作系统ChatGPT系统源码+DALL-E3文生图+AI绘画+GPT语音对话功能

一、前言 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作Ch…

ubuntu 20.04安装一系列软件

1&#xff09;安装下载的包的指令&#xff1a; sudo dpkg -i xxx.deb 2&#xff09;通用指令&#xff1a; sudo apt-get install xxxx 3&#xff09;更新和升级软件包&#xff08;遇到问题先尝试这个指令&#xff09;&#xff1a; sudo apt-get update sudo apt-get install…

Java_集合进阶(Collection和List系列)

一、集合概述和分类 1.1 集合的分类 已经学习过了ArrayList集合&#xff0c;但是除了ArrayList集合&#xff0c;Java还提供了很多种其他的集合&#xff0c;如下图所示&#xff1a; 我想你的第一感觉是这些集合好多呀&#xff01;但是&#xff0c;我们学习时会对这些集合进行…

基于alibaba druid的血缘解析工具

基于alibaba druid的血缘解析 1、前言 仅仅对mysql数据库的select查询语句进行了血缘解析&#xff0c;该血缘解析包含了原始表字段、临时表字段和目标表字段的关联关系。 2、涉及到技术 主要使用了druid的如下接口对语法树进行解析&#xff1a; &#xff08;1&#xff09;…

JavaWeb笔记之前端开发CSS

一 、引言 1.1 CSS概念 层叠样式表(英文全称&#xff1a;Cascading Style Sheets)是一种用来表现HTML&#xff08;标准通用标记语言的一个应用&#xff09;或XML&#xff08;标准通用标记语言的一个子集&#xff09;等文件样式的计算机语言。CSS不仅可以静态地修饰网页&…

美颜技术详解:深入了解视频美颜SDK的工作机制

本文将深入探讨视频美颜SDK的工作机制&#xff0c;揭示其背后的科技奥秘和算法原理。 1.引言 视频美颜SDK作为一种集成到应用程序中的技术工具&#xff0c;通过先进的算法和图像处理技术&#xff0c;为用户提供令人印象深刻的实时美颜效果。 2.视频美颜SDK的基本工作原理 首…

SVN小白常见操作流程

SVN小白常见操作流程 一、什么是Subversion&#xff1f;二、TortoiseSVN客户端安装教程三、SVN 操作3.1 SVN Ckeckout(检出)3.2 Add(新增文件)3.3 SVN Commit(提交)3.4 SVN Update(更新操作)3.5SVN Delete(删除操作)3.6 SVN Revert to a revision(版本回溯)3.7 不同版本内容之间…