OpenCV4工业缺陷检测的六种方法
- 机器视觉
- 缺陷检测
- 好书推荐
- 工业上常见缺陷检测方法
- 方法一:
- 方法二:
- 方法三:
- 方法四:
- 方法五:
- 方法六:
- 写在末尾:
主页传送门:📀 传送
送书系列:
送书第一期:考研必备书单
送书第二期:CTF那些事儿
送书第三期:数据要素安全流通
送书第四期:MLOps工程实践:工具、技术与企业级应用
送书第五期:Python数据挖掘:入门进阶与实用案例分析
送书第六期:ChatGPT 驱动软件开发:AI 在软件研发全流程中的革新与实践
送书第七期: 数据相关书单自选
送书第八期:一分钟秒懂人工智能对齐
送书第九期:软件架构书单自选
送书第十期:利用python进行数据分析
送书第十一期:一本书讲透Java线程:原理与实践
机器视觉
机器视觉是使用各种工业相机,结合传感器跟电气信号实现替代传统人工,完成对象识别、计数、测量、缺陷检测、引导定位与抓取等任务。其中工业品的缺陷检测极大的依赖人工完成,特别是传统的3C制造环节,产品缺陷检测依赖于人眼睛来发现与检测,不仅费时费力还面临人员成本与工作时间等因素的制约。使用机器视觉来实现产品缺陷检测,可以节约大量时间跟人员成本,实现生产过程的自动化与流水线作业。
缺陷检测
常见得工业品缺陷主要包括划痕、脏污、缺失、凹坑、裂纹等,这些依赖人工目检(眼睛检测)的缺陷都可以通过机器视觉的缺陷检测算法来实现替代。当前工业缺陷检测算法目前主要分为两个方向,基于传统视觉的算法和基于深度学习的算法,前者主要依靠对检测目标的特征进行量化,比如颜色,形状,长宽,角度,面积等,好处是可解释性强、对样本数量没有要求、运行速度快,缺点是依赖于固定的光照成像,稍有改动就要改写程序重新部署,而且检测规则和算法跟开发者经验其主导作用。基于深度学习的缺陷检测算法刚好能弥补前者的不足之处,能够很好适应不同的光照,更好地适配同类缺陷要求,缺点是对样本数量有一定要求,对硬件配置相比传统也会有一定要求。
好书推荐
《OpenCV应用开发:入门、进阶与工程化实践》一书第十四 章 通过案例详细介绍基于OpenCV如何实现传统方式的缺陷检测跟基于深度学习的缺陷检测。
工业上常见缺陷检测方法
方法一:
基于简单二值图像分析实现划痕提取,效果如下:
方法二:
复杂背景下的图像缺陷分析,基于频域增强的方法实现缺陷检测,运行截图:
方法三:
复杂背景下的图像缺陷分析,基于空域增强实现图像缺陷分析,针对复杂背景的图像,通过空域滤波增强以后实现缺陷查找,运行截图如下:
方法四:
基于样品模板比对实现基于空域增强实现图像缺陷分析,通过二之分析与轮廓比对实现缺陷查找,运行截图如下:
方法五:
基于深度学习UNet模型网络,实现裂纹与划痕检测,运行截图如下:
方法六:
基于深度学习实例分割网络模型网络,实现细微缺陷检测,运行截图如下:
以上内容均来自最近出版的一本新书《OpenCV应用开发:入门、进阶与工程化实践》一书第十四章,分享给大家。
延伸阅读
OpenCV4应用开发:入门、进阶与工程化实践
贾志刚 张振 著
工业界和学术界专家联袂推荐
一线开发专家与金牌讲师撰写,一站式解决OpenCV工程化开发痛点
推荐语:
以工业级视觉应用开发所需知识点为主线,讲透OpenCV相关核心模块,案例化详解1000个常用函数、深度学习知识以及模型的推理与加速。
本书专注于介绍OpenCV4在工业领域的常用模块,通过合理的章节设置构建了阶梯式的知识点学习路径。化繁就简、案例驱动,注重算法原理、代码演示及在相关场景的实际使用。本书还介绍了必备的深度学习知识与开发技巧,拓展OpenCV开发者技能。
写在末尾:
根据博客阅读量本次活动一共赠书若干本
评论区抽取若干位小伙伴送出,中奖了会私信通知
参与方式:关注博主、点赞、收藏 + 评论
(任意评论不折叠即可,切记要点赞+收藏,否则抽奖无效,每个人最多评论三次)
如果喜欢的话,欢迎 🤞关注 👍点赞 💬评论 🤝收藏 🙌一起讨论你的支持就是我✍️创作的动力! 💞💞💞