[23] GaussianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians

[paper | proj]

  • 给定FLAME,基于每个三角面片中心初始化一个3D Gaussian(3DGS);当FLAME mesh被驱动时,3DGS根据它的父亲三角面片,做平移、旋转和缩放变化;
  • 3DGS可以视作mesh上的辐射场;
  • 为实现高保真的avatar,本文提出一种蒙皮(binding)继承策略,在优化过程中,保持蒙皮对3DGS的控制;
  • 本文贡献如下:
    • 提出GaussianAvatars,通过将3DGS绑定至FLAME模型,实现可驱动的head avatars;
    • 设计了一种蒙皮继承策略,使得在保持蒙皮控制的情况下,3DGS的新增和移除。

近期工作

静态场景表征

  • NeRF用神经网络,以辐射场的形式存储场景;
  • 后续工作将场景表征为voxel grids、使用voxel hashing、或使用tensor decomposition,加速渲染;
  • PointNeRF使用点云表征场景;
  • 3D Gaussian Splatting使用各向异性3D Gaussian,实现实时渲染和优异的视觉效果;
  • Mixture of Volumetric Primitives使用surface-aligned volumes实现高视觉保真度的快速渲染;

动态场景表征

  • Basic Design:基于NeRF的方法,输入4D坐标(x, y, z, t),输出密度和颜色。例如:K-Plane、4K4D等。这类方法虽然效果不错,但是无法显式控制内容;
  • Deformation MLP:学习静态标定空间,通过MLP将其他时间下的空间映射回标准空间;
  • Proxy geometry:
  • Liu等人 [25] 基于SMPL移动后的最近三角面片,将观察空间中的点warp回标定空间;
  • Peng等人 [34] 基于SMPL的骨架和神经蒙皮系数(neural blending weights)变形点;
  • 前向变形(forward deformation)[13, 18, 20, 23, 48] 和cage-based deformation [54];
  • 不同于上述方法,本文将3DGS附着在三角面片上,并显式地移动他们,避免使用标定空间,并可使用mesh finetuning。

头像重建与驱动

  • Thies等人 [41] 实现了数字人的实时人脸跟踪和面部重现(face reenactment);
  • Gafni等人 [8] 从单目视频中以表情系数作为控制信号,学习NeRF;
  • Grassal等人 [10] 向FLAME中添加偏移量,增强几何,通过基于表情控制的纹理域,实现动态纹理;
  • IMavatar [51] 基于神经隐式方程学习3D可形变数字人,通过iterative root-finding实现标定空间到观察空间的映射;
  • HeadNeRF [11] 学习一个基于NeRF的参数化头模;
  • INSTA [55] 通过寻找FLAME上最近三角面片,将查询点映射回标定空间;
  • Zheng [52] 探索了基于点的表征和可导的点渲染方法,在标定空间中定义点集,学习受FLAME表情系数控制的形变场,以驱动数字人;
  • AvatarMAV [46] 定义了标定辐射场和运动场;
  • 不同于INSTA,本文在3DGS和三角面片间建立一致性关联。

方法

  • 根据给定的多视角图片和相机参数,估计每帧图片中的FLAME参数;
  • 建立三角面片和3DGS的关系;
  • 可导渲染得到图片与GT图片算损失,用于训练模型;
  • 在训练过程中,通过蒙皮继承策略(binding inheritance strategy)控制3DGS增删后与三角面片的对应关系。

绑定3DGS与三角面片

给定三角面片,本文计算:

  • 均值位置T:给定三角面片的三条边,计算对应的均值位置;
  • 构造旋转矩阵R:1)三角面片的某条边;2)三角面片的法向向量;3)与前两者垂直的第三边;
  • 放缩变量k:通过三角形中一条边及其垂线的平均长度来计算标量k,以描述三角面片缩放;

对于对应的3DGS,在局部空间定义其位置\mu,旋转矩阵r,各向异性缩放系数s

  • 初始化时,\mu为局部零点位置,r为单位旋转矩阵,s为单位矢量。
  • 渲染时,将其从局部空间转换为全局空间:

本文将三角面片的缩放系数s,嵌入到公式5和6中,使得3DGS的局部位置和缩放与三角面片的缩放相关。这使得全局定义的学习率可以适用于局部。

蒙皮继承策略

  • 稠密:对于具有较大view-space positional gradient的3DGS,如果该点较大则拆分为两个,如果较小则复制一个新的;确保新3DGS和旧的足够近,这样可以将新点绑定至旧点对应的三角面片;
  • 剪枝:在3DGS原有剪枝的技术上,确保每个三角面片具有至少一个3DGS。有些脸部区域(眼球)常被遮挡,很有可能由于剪枝,导致眼球部分的3DGS被去掉。

优化和正则

  • 渲染图像损失如下,可以保证对已有场景有不错效果,但是对新表情和位置效果不佳(存在spike和blob伪影)

具有阈值的位置损失(Position loss with threshold)

在蒙皮继承策略中,本文通过拆分和复制增加新的3DGS。理想情况下,新增的3DGS应该与面片相邻。但是经过优化后,无法保证他们相邻。为解决该问题,本文引入了位置正则项:

\epsilon_{position}=1,确保3DGS和它的父亲三角面片足够近。

具有阈值的放缩损失(Scaling loss with threshold)

如果某个3DGS相较于它的父亲三角面片更大,三角面片的小角度旋转,会在3DGS上被放大,导致伪影。为解决该问题,本文引入了放缩正则项:

\epsilon_{scaling}=0.6,确保3DGS不会太大。

最终损失

其中,\lambda_{position}=0.01\lambda_{scaling}=1。这两项确保常被遮挡的区域(眼球、牙齿)可以被保留。

实现细节

  • Adam,位置学习率为5e-3,放缩学习率为1.7e-2;
  • 除了3DGS,FLAME的translation、joint rotation和表情系数也会fine-tune,学习率分别为:1e-6,1e-5和1e-3。
  • 训练600k iters,从10k iters之后,每2k iters执行3DGS的更新和蒙皮继承策略,每60k iters,重新设置3DGS的不透明度。

实验

  • 数据集:NeRSemble数据集上的9个目标,每个目标包含10种表情和16个视角。
  • 测试:1)新视角生成(novel-view synthesis);2)自重演(self-reenactment);3)跨ID重演(cross-identity reenactment)。

数字人重建

消融实验

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/232940.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

「Vue3面试系列」Vue3.0的设计目标是什么?做了哪些优化?

文章目录 一、设计目标1.1 更小1.2 更快1.3更友好 二、优化方案2.1 源码2.11源码管理2.22 TypeScript 2.2 性能2.3 语法 API2.31逻辑组织2.32 逻辑复用 参考文献 一、设计目标 不以解决实际业务痛点的更新都是耍流氓,下面我们来列举一下Vue3之前我们或许会面临的问…

校园转转二手市场源码+Java二手交易市场整站源码

源码介绍 校园转转二手市场源码分享,Java写的应用,mybatis-plus 和 Hibernate随心用 后台地址:/home/index/index 账号密码:admin/123456 前台地址:/system/login

计算机网络2

OSI参考模型七层: 1.应用层 2.表示层 3.会话层 4.传输层 5.网络层 6.数据链路层 7.物理层 TCP/IP模型 5层参考模型

Apipost检测接口工具的基本使用方法

👀 今天言简意赅的介绍一款和postman一样好用的后端接口测试工具Apipost 专门用于测试后端接口的工具,可以生成接口使用文档官方下载网站:http://www.apipost.cn 傻瓜式安装—>register->项目->创建项目->APIs->新建目录&…

Linux Docker本地部署WBO在线协作白板结合内网穿透远程访问

文章目录 前言1. 部署WBO白板2. 本地访问WBO白板3. Linux 安装cpolar4. 配置WBO公网访问地址5. 公网远程访问WBO白板6. 固定WBO白板公网地址 前言 WBO在线协作白板是一个自由和开源的在线协作白板,允许多个用户同时在一个虚拟的大型白板上画图。该白板对所有线上用…

LeetCode刷题--- 全排列 II

个人主页:元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏 力扣递归算法题 http://t.csdnimg.cn/yUl2I 【C】 http://t.csdnimg.cn/6AbpV 数据结构与算法 http://t.csdnimg.cn/hKh2l 前言:这个专栏主要讲述递归递归、搜…

回归预测 | MATLAB实现GA-LSSVM基于遗传算法优化最小二乘向量机的多输入单输出数据回归预测模型 (多指标,多图)

回归预测 | MATLAB实现GA-LSSVM基于遗传算法优化最小二乘向量机的多输入单输出数据回归预测模型 (多指标,多图) 目录 回归预测 | MATLAB实现GA-LSSVM基于遗传算法优化最小二乘向量机的多输入单输出数据回归预测模型 (多指标&#…

ISCTF(b)

test_nc nc_shell ls cat flag 这两道题比较像 你说爱我?尊嘟假嘟 打开后重复出现 “ 你说爱我 ” “ 尊嘟 ” “ 假嘟 ” 。判断为 Ook 加密 , 将 “ 你说爱我 ” 替换为 “Ook.” ; “ 尊嘟 ” 替换为: “Ook!” ; “ 假嘟…

mysql函数(二)之常见字符串函数

MySQL中常见的字符串函数有以下几种: CONCAT():将两个或多个字符串连接在一起。 用法:CONCAT(string1, string2, ...) 效果图: LENGTH():返回字符串的长度。 用法:LENGTH(string) 效果图: U…

教你如何使用天眼销查企业客户

天眼销是一款能够帮助客户获取最新的企业联系方式、工商信息等关键数据的平台。 平台基于先进的技术和大数据解决方案,深入挖掘和分析企业信息,能够高效地收集、整理和存储各类企业数据,为用户提供360度视角和洞察;提供全面、准确…

【算法与数据结构】LeetCode55、45、跳跃游戏 I 、II

文章目录 一、跳跃游戏I二、跳跃游戏II三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、跳跃游戏I 思路分析:本题目标是根据跳跃数组的元素,判断最终能够到达数组末端。我们引入了一个跳跃范围…

跨境电商的未来工作方式:远程团队与全球协作

随着数字化时代的来临,跨境电商行业在不断演变,其未来工作方式也呈现出新的趋势。本文将探讨跨境电商未来的工作方式,聚焦于远程团队与全球协作的发展,以揭示这一变革如何重新定义企业的组织结构和工作模式。 远程团队的崛起 近年…

Leetcode—859.亲密字符串【简单】

2023每日刷题(六十三) Leetcode—859.亲密字符串 💩山实现代码 class Solution { public:bool buddyStrings(string s, string goal) {int len1 s.size(), len2 goal.size();int cnt 0;int flag 0;int flag2 0;int odd -1;int a[26] …

双指针——找到字符串中的所有字母异位词

https://leetcode.cn/problems/find-all-anagrams-in-a-string/description/?envTypestudy-plan-v2&envIdtop-100-liked 双指针,每次都统计出来p长度的滑动窗口里的数字,拿Arrays.equals进行对比,然后滑动一小格,减1加1继续比对即可。 class Solut…

VS2019, mfc,c++和halcon 2022调试的时候,查询halcon变量的值, 一直提示未为 halconcpp.dll 加载任何符号

在调试看值的过程中,发现这里看不到变量的值。 可以使用halcon变量检查工具查看。

Leetcode—96.不同的二叉搜索树【中等】

2023每日刷题&#xff08;六十四&#xff09; Leetcode—96.不同的二叉搜索树 算法思想 实现代码 class Solution { public:int numTrees(int n) {vector<int> G(n 1, 0);G[0] 1;G[1] 1;for(int i 2; i < n; i) {for(int j 1; j < i; j) {G[i] G[j - 1] * …

多目标跟踪学习

本文来源&#xff1a; 目标跟踪那些事儿-技术和课程介绍_哔哩哔哩_bilibili 为该视频的学习笔记 目的&#xff1a;我的学习目的主要是了解现有的跟踪算法&#xff0c;并着重了解卡尔曼滤波算法&#xff0c;利用卡尔曼滤波算法进行多目标跟踪等后续一系列估计算法。老师视频中提…

harmonyOS 自定义组件基础演示讲解

上文 HarmonyOS组件属性控制 链式编程格式推荐我们讲了一些系统组件 可以传入一些事件和参数 来达到一些不同的效果 其实 我们还可以用自己写的组件 那么 组件这么写&#xff1f; 其实 我们的 page 内部结果 就是一个组件 harmonyOS的概念 万物皆组件 那么 我们就可以在他下面…

产品入门第六讲:Axure中继器

&#x1f4da;&#x1f4da; &#x1f3c5;我是默&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; ​​​​​​ &#x1f31f;在这里&#xff0c;我要推荐给大家我的专栏《Axure》。&#x1f3af;&#x1f3af; &#x1f680;无论你是编程小白&#xff0c…

ChatGPT引领AI时代:程序员、项目经理、产品经理、架构师、Python量化交易师的翅膀

&#x1f482; 个人网站:【 海拥】【神级代码资源网站】【办公神器】&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交流的小伙伴&#xff0c;请点击【全栈技术交流群】 在当今AI时代&#xff0c;ChatGPT作为一项卓越…