风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型

目录

前言

1 风速数据EMD分解与可视化

1.1 导入数据

1.2 EMD分解

2 数据集制作与预处理

2.1 先划分数据集,按照8:2划分训练集和测试集

2.2 设置滑动窗口大小为96,制作数据集

3 基于Pytorch的EMD-CNN-GRU并行模型预测

3.1 数据加载,训练数据、测试数据分组,数据分batch

3.2 定义EMD-CNN-GRU并行预测模型

3.3 定义模型参数

3.4 模型训练

3.5 结果可视化


往期精彩内容:

风速预测(一)数据集介绍和预处理-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客

前言

LSTF(Long Sequence Time-Series Forecasting)问题是指在时间序列预测中需要处理长序列的情况。在实际应用中,时间序列可能会包含非常大量的数据点,在这种情况下,传统的时间序列预测模型可能会遇到一些挑战,因为处理长序列时会出现一些问题,例如:

  • 长期依赖性: 随着时间序列数据的增长,模型需要能够捕捉长期的依赖关系和趋势。

  • 计算复杂性: 针对长序列进行训练和预测通常需要更多的计算资源和时间。

  • 内存消耗: 长序列通常需要大量的内存来存储数据和模型参数,这可能会导致内存耗尽或者性能下降的问题。

在处理LSTF问题时,选择合适的窗口大小(window size)是非常关键的。选择合适的窗口大小可以帮助模型更好地捕捉时间序列中的模式和特征,为了提取序列中更长的依赖建模,本文把窗口大小提升到96,运用EMD-CNN-GRU并行模型来充分提取序列中的特征信息。

本文基于前期介绍的风速数据(文末附数据集),先经过经验模态EMD分解,然后通过数据预处理,制作和加载数据集与标签,最后通过Pytorch实现EMD-CNN-GRU并行模型对风速数据的预测。风速数据集的详细介绍可以参考下文:

风速预测(一)数据集介绍和预处理-CSDN博客

1 风速数据EMD分解与可视化

1.1 导入数据

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')
​
# 读取已处理的 CSV 文件
df = pd.read_csv('wind_speed.csv' )
# 取风速数据
winddata = df['Wind Speed (km/h)'].tolist()
winddata = np.array(winddata) # 转换为numpy
# 可视化
plt.figure(figsize=(15,5), dpi=100)
plt.grid(True)
plt.plot(winddata, color='green')
plt.show()

1.2 EMD分解

from PyEMD import EMD
​
# 创建 EMD 对象
emd = EMD()
# 对信号进行经验模态分解
IMFs = emd(winddata)
​
# 可视化
plt.figure(figsize=(20,15))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(winddata, 'r')
plt.title("原始信号")
​
for num, imf in enumerate(IMFs):plt.subplot(len(IMFs)+1, 1, num+2)plt.plot(imf)plt.title("IMF "+str(num+1), fontsize
=
10
)
# 增加第一排图和第二排图之间的垂直间距
plt.subplots_adjust(hspace=0.8, wspace=0.2)
plt.show()

2 数据集制作与预处理

2.1 先划分数据集,按照8:2划分训练集和测试集

2.2 设置滑动窗口大小为96,制作数据集

3 基于Pytorch的EMD-CNN-GRU并行模型预测

3.1 数据加载,训练数据、测试数据分组,数据分batch

# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
​
# 加载数据集
def dataloader(batch_size, workers=2):# 训练集train_set = load('train_set')train_label = load('train_label')# 测试集test_set = load('test_set')test_label = load('test_label')
​# 加载数据train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_set, train_label),batch_size=batch_size, num_workers=workers, drop_last=True)test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_set, test_label),batch_size=batch_size, num_workers=workers, drop_last=True)return train_loader, test_loader
​
batch_size = 64
# 加载数据
train_loader, test_loader = dataloader(batch_size)

3.2 定义EMD-CNN-GRU并行预测模型

注意:输入风速数据形状为 [64, 10, 96], batch_size=64,  维度10维代表10个分量,96代表序列长度(滑动窗口取值)。

3.3 定义模型参数

​# 定义模型参数
batch_size = 64
input_len = 96   # 输入序列长度为96 (窗口值)
input_dim = 10    # 输入维度为10个分量
conv_archs = ((1, 32), (1, 64))   # CNN 层卷积池化结构  类似VGG
hidden_layer_sizes = [64, 128]  # GRU 层 结构
output_size = 1 # 单步输出
​
model = EMDCNNGRUModel(batch_size, input_len, input_dim, conv_archs, hidden_layer_sizes, output_size=1)  
​
# 定义损失函数和优化函数
model = model.to(device)
loss_function = nn.MSELoss()  # loss
learn_rate = 0.003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

3.4 模型训练

训练结果

采用两个评价指标:MSE 与 MAE 对模型训练进行评价,100个epoch,MSE 为0.00441,MAE  为 0.0002034,EMD-CNN-GRU并行模型预测效果良好,性能提升明显,适当调整模型参数,还可以进一步提高模型预测表现。通过CNN模型来处理输入的长窗口时间序列数据,能够有效地捕获局部模式和特征,同时把数据送入GRU网络来提取时序特征,最后把时序特征和空间特征进行融合。EMD-CNN-GRU并行模型效果明显,可见其性能的优越性。

注意调整参数:

  • 可以适当调整CNN中卷积池化的层数和维度,微调学习率;

  • 调整GRU网络层数和维度,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

3.5 结果可视化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/230072.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初识Dubbo学习,一文掌握Dubbo基础知识文集(3)

🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论…

Ubuntu-报错

Hadoop-Eclipse-java:耽误进度的几个报错 错误1:桥接模式与NAT模式相互切换后导致两种模式都不能访问互联网(1)具体错误:(2)错误原因:(3)解决方案&#xff1a…

Redis设计与实现之订阅与发布

目录 一、 订阅与发布 1、 频道的订阅与信息发送 2、订阅频道 3、发送信息到频道 4、 退订频道 5、模式的订阅与信息发送 ​编辑 6、 订阅模式 7、 发送信息到模式 8、 退订模式 三、订阅消息断连 1、如果订阅者断开连接了,再次连接会不会丢失之前发布的消…

股票价格预测 | Python实现基于Stacked-LSTM的股票预测模型,可预测未来(keras)

文章目录 效果一览文章概述模型描述源码设计效果一览 文章概述 以股票价格预测为例,基于Stacked-LSTM的股票预测模型(keras),可预测未来。 模型描述 LSTM 用于处理序列数据,如时间序列、文本和音频。相对于传统的RNN,LSTM更擅长捕获长期依赖关系,

tomcat错误

Error running Tomcat8: Address localhost:1099 is already in use window环境,打开cmd netstat -ano | findstr :1099发现对应PID为24732 结束PID taskkill /PID 24732 /F

MATLAB图像处理技巧

MATLAB图片处理------动态绘图 1. 动态绘图2. XXXXX 1. 动态绘图 主要用到四个函数,分别为getframe、frame2im、rgb2ind以及imwrite: 1.getframe:获取当前绘图窗口的图片作为影片帧; 2.frame2im:从单个影片帧 F 返回索…

Redis Set类型

集合类型也是保存多个字符串类型的元素的,但和列表类型不同的是,集合中 1)元素之间是无序的 2)元素不允许重复 一个集合中最多可以存储2的32次方个元素。Redis 除了支持集合内的增删查改操作,同时还支持多个集合取交…

Axure元件的介绍使用以及登录界面

一、Axure元件介绍 简介: Axure元件是一种功能强大的设计工具,专门用于用户体验设计和交互设计。它可以帮助设计师创建可交互的原型,并实现各种界面元素的设计和布局。 Axure元件的基本特点包括: 多样性:Axure元件包括…

自动驾驶学习笔记(二十)——Planning算法

#Apollo开发者# 学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往: 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo 社区开发者圆桌会》免费报名—>传送门 文章目录 前言 参考线平滑 双层状态机 EM Planner …

找到一些看似冷门但流量惊人的一些网站!- 独立产品灵感周刊 DecoHack #057

本周刊记录有趣好玩的独立产品设计开发相关内容,每周发布,往期内容同样精彩,感兴趣的伙伴可以 点击订阅我的周刊。为保证每期都能收到,建议邮件订阅。欢迎通过 Twitter 私信推荐或投稿。 💻 产品推荐 1. Drawing Pics…

【Filament】绘制三角形

1 前言 Filament环境搭建中介绍了 Filament 的 Windows 和 Android 环境搭,本文将使用 Filament 绘制纯色和彩色三角形。 1.1 Filament 类图 1.2 图元 Filament 中图形的绘制都是基于三角形实现,三角形是构成复杂图形的最小基本单元。Filament 中输入模…

springMVC-模型数据的处理

一、数据放入到request域当中 1、把获取的数据放入request域中&#xff0c; 方便在跳转页面去显示 <a>添加主人信息</a> <form action"vote/vote04" method"post" >主人id&#xff1a;<input type"text" name"id&q…

JS中的模板字符串(ES6中的模板字面量语法),什么是模板字符串、怎么使用,附代码演示

模板字符串 1、JavaScript 在 ES6 新增了模板字符串语法。模板字符串可以作为普通字符串使用&#xff0c;其作用是可以在字符串中换行&#xff08;也就是支持多行字符串&#xff09;以及将变量和表达式插入字符串。 2、整个语法&#xff1a;使用反引号 &#xff0c;而不是单引…

MindOpt工具是如何做到配套使用的?请看此篇

Mindopt 介绍 MindOpt是阿里巴巴达摩院决策职能实验室研发的专注于优化领域&#xff0c;提供智能优化解决方案的品牌。主要的目标是帮助客户通过先进的优化算法和技术&#xff0c;实现业务流程的最佳化&#xff0c;提升效率&#xff0c;降低成本&#xff0c;并最大化业务价值。…

【强化学习-读书笔记】表格型问题的 Model-Free 方法

参考 Reinforcement Learning, Second Edition An Introduction By Richard S. Sutton and Andrew G. Barto无模型方法 在前面的文章中&#xff0c;我们介绍的是有模型方法&#xff08;Model-Based&#xff09;。在强化学习中&#xff0c;"Model"可以理解为算法…

助力智能人群检测计数,基于YOLOv3开发构建通用场景下人群检测计数识别系统

在一些人流量比较大的场合&#xff0c;或者是一些特殊时刻、时段、节假日等特殊时期下&#xff0c;密切关注当前系统所承载的人流量是十分必要的&#xff0c;对于超出系统负荷容量的情况做到及时预警对于管理团队来说是保障人员安全的重要手段&#xff0c;本文的主要目的是想要…

YOLOv3-YOLOv8的一些总结

0 写在前面 这个文档主要总结YOLO系列的创新点&#xff0c;以YOLOv3为baseline。参考(抄)了不少博客&#xff0c;就自己看看吧。有些模型的trick不感兴趣就没写进来&#xff0c;核心的都写了。 YOLO系列的网络都由四个部分组成&#xff1a;Input、Backbone、Neck、Prediction…

Spring之容器:IOC(2)

学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持&#xff0c;想组团高效学习… 想写博客但无从下手&#xff0c;急需…

Nat. Methods | RoseTTAFoldNA准确预测蛋白质-核酸复合体

今天为大家介绍的是来自Frank DiMaio团队的一篇论文。蛋白质-核糖核酸&#xff08;RNA&#xff09;和蛋白质-脱氧核糖核酸&#xff08;DNA&#xff09;复合体在生物学中扮演着至关重要的角色。尽管近年来在蛋白质结构预测方面取得了显著进展&#xff0c;但预测没有同源已知复合…

海洋可视化大屏,Photoshop源文件

数据大屏通过实时的数据展示&#xff0c;可及时发现数据的变化和异常&#xff0c;以便及时采取措施。现分享海洋动力大数据监控、海洋数据监控系统、科技感海洋监控系统大屏模版的UI源文件&#xff0c;供UI设计师们快速获取PSD源文件完成工作 若需更多 大屏组件&#xff0c;请…