【贪心算法】leetcode刷题

贪心算法无固定套路。
核心思想:先找局部最优,再扩展到全局最优。

455.分发饼干

在这里插入图片描述
两种思路:
1、从大到小。局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。先遍历的胃口,在遍历的饼干
在这里插入图片描述

class Solution:def findContentChildren(self, g: List[int], s: List[int]) -> int:g = sorted(g,reverse=True)s = sorted(s,reverse=True)count = 0si = 0for gi in g:if si<len(s) and s[si]>=gi:   # 饼干要大于胃的容量,才能喂饱count+=1si+=1             return count

2、从小到大。小饼干先喂饱小胃口。两个循环的顺序改变了,先遍历的饼干,在遍历的胃口,这是因为遍历顺序变了,我们是从小到大遍历。

class Solution:def findContentChildren(self, g: List[int], s: List[int]) -> int:g = sorted(g)s = sorted(s)count = 0gi = 0for si in s:if gi<len(g) and g[gi]<=si:  # 胃的容量要小于等于饼干大小才能喂饱count+=1gi+=1    return count

376. 摆动序列

在这里插入图片描述
具体实例:
在这里插入图片描述
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
**整体最优:**整个序列有最多的局部峰值,从而达到最长摆动序列。

考虑几种情况:

  • 情况一:上下坡中有平坡
  • 情况二:数组首尾两端
  • 情况三:单调坡中有平坡

情况一:上下坡中有平坡
在这里插入图片描述
它的摇摆序列长度是多少呢? 其实是长度是 3,也就是我们在删除的时候 要不删除左面的三个 2,要不就删除右边的三个 2。
在这里插入图片描述
在图中,当 i 指向第一个 2 的时候,prediff > 0 && curdiff = 0 ,当 i 指向最后一个 2 的时候 prediff = 0 && curdiff < 0。
如果我们采用,删左面三个 2 的规则,那么 当 prediff = 0 && curdiff < 0 也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。
所以我们记录峰值的条件应该是: (preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0),为什么这里允许 prediff == 0 ,就是为了 上面我说的这种情况。

情况二:数组首尾两端
例如序列[2,5],如果靠统计差值来计算峰值个数就需要考虑数组最左面和最右面的特殊情况。
因为我们在计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i])的时候,至少需要三个数字才能计算,而数组只有两个数字。
这里我们可以写死,就是 如果只有两个元素,且元素不同,那么结果为 2。
在这里插入图片描述

情况三:单调坡度有平坡
在这里插入图片描述

class Solution:def wiggleMaxLength(self, nums: List[int]) -> int:count = 1# 情况二,小于等于2的情况,可以写死if len(nums)<2:return len(nums)if len(nums)==2:if nums[-1]-nums[0]==0:return 1return len(nums)# 情况一以及情况三:prediff = 0for i in range(0,len(nums)-1):# if i>0:#     prediff = nums[i-1]-nums[i]curdiff = nums[i]-nums[i+1]if (prediff<=0 and curdiff>0) or (prediff>=0 and curdiff<0):count+=1prediff = curdiff   # 更新prediffreturn count  

122.买卖股票的最佳时机 II

在这里插入图片描述
如果想到其实最终利润是可以分解的,那么本题就很容易了!
如何分解呢?
假如第 0 天买入,第 3 天卖出,那么利润为:prices[3] - prices[0]。
相当于==(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])==。
此时就是把利润分解为每天为单位的维度,而不是从 0 天到第 3 天整体去考虑!
那么根据 prices 可以得到每天的利润序列:(prices[i] - prices[i - 1])…(prices[1] - prices[0])。

  • 局部最优:收集每天的正利润,全局最优:求得最大利润。
    在这里插入图片描述
class Solution:def maxProfit(self, prices: List[int]) -> int:n = len(prices)dp = [0]*(n-1)for i in range(1,n):dp[i-1] = prices[i]-prices[i-1]res = 0for i in dp:if i>0:res+=ireturn res

55. 跳跃游戏

在这里插入图片描述
在这里插入图片描述
每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。
贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
i 每次移动只能在 cover 的范围内移动,每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。
而 cover 每次只取 max(该元素数值补充后的范围, cover 本身范围)。
如果 cover 大于等于了终点下标,直接 return true 就可以了

class Solution:def canJump(self, nums: List[int]) -> bool:n = len(nums)cover = 0if n<2:return Truefor i in range(n-1):if cover>=i:cover = max(cover,i+nums[i])if cover>=n-1:return Truereturn False

45.跳跃游戏 II

在这里插入图片描述
如果移动下标等于当前覆盖最大距离下标, 需要再走一步(即 ans++),因为最后一步一定是可以到的终点。(题目假设总是可以到达数组的最后一个位置),如图:
在这里插入图片描述
如果移动下标不等于当前覆盖最大距离下标,说明当前覆盖最远距离就可以直接达到终点了,不需要再走一步。如图:
在这里插入图片描述

class Solution:def jump(self, nums: List[int]) -> int:cur_distance = 0  # 当前覆盖的最远距离下标ans = 0  # 记录走的最大步数next_distance = 0  # 下一步覆盖的最远距离下标for i in range(len(nums) - 1):  # 注意这里是小于len(nums) - 1,这是关键所在next_distance = max(nums[i] + i, next_distance)  # 更新下一步覆盖的最远距离下标if i == cur_distance:  # 遇到当前覆盖的最远距离下标cur_distance = next_distance  # 更新当前覆盖的最远距离下标ans += 1return ans

1005.K次取反后最大化的数组和

在这里插入图片描述

class Solution:def largestSumAfterKNegations(self, nums: List[int], k: int) -> int:nums.sort(key=lambda x:abs(x),reverse=True)  # 按照绝对值的个数排序,且从大到小,为了后面先将前k个大负数进行翻转为正数,保证和最大for i in range(len(nums)):if nums[i]<0 and k>0:   # 将负数都翻转为正数k-=1nums[i] = -nums[i]# 现在全部都是正数了if k%2==1: # 如果还剩奇数个,则将最小的正数翻转nums[-1] = -nums[-1]# 如果是偶数,其实不用管,因为随便翻转个正数偶数次就可以了,不影响最后结果return sum(nums)

134. 加油站

分发糖果

在这里插入图片描述

  • 从左到右:
    如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1
    在这里插入图片描述
  • 从右到左考虑:
    再确定左孩子大于右孩子的情况(从后向前遍历)
    遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?
    因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历。
    如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了 。如图:
    在这里插入图片描述在这里插入图片描述

如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。
那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。

所以就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多。

class Solution:def candy(self, ratings: List[int]) -> int:k = len(ratings)dp = [1]*k# 从左到右for i in range(k):if i>0 and ratings[i]>ratings[i-1]:dp[i] = dp[i-1]+1# 从右到左for i in range(k-2,-1,-1):if ratings[i]>ratings[i+1]:dp[i] = max(dp[i+1]+1,dp[i])  # 关键点 见解析return sum(dp)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/22892.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Lua】Lua包管理器-LuaRocks的使用教程

文章目录 安装luarocks使用luarocks1. 安装模块2. 加载模块其它命令协作开发使用方式 lua的包管理工具是&#xff1a;LuaRocks。本文内容基于MacOS系统。 安装luarocks > cd 你预期的安装目录 > wget https://luarocks.org/releases/luarocks-3.9.2.tar.gz > tar zx…

bash变量和参数介绍

bash变量和参数介绍 概述 变量可以让程序和脚本语言用来描述数据。一个变量仅仅是一个标签而已&#xff0c;被指定到计算机内存中存储着数据的某个位置或某些位置的标签。变量一般出现在算术运算操作和数量操纵及字符串解析中。 4.1. 变量替换(Variable Substitution) 变量的名…

[containerd] ContentPlugin插件源码分析

文章目录 1. 概述2. 环境3. 注册4. 核心概念4.1. blob4.2. ingest 5. 抽象接口5.1. Manager接口5.2. Provider5.3. IngestManager5.4. Ingester 6. 核心实现6.1. Info6.2. Update6.3. Walk6.4. Delete6.5. ReaderAt6.6. Status6.7. ListStatuses6.8. Abort6.9. Writer 7. 总结 …

Elasticsearch删除文档

根据id删除 例如删除id为110的文档 DELETE /ffbf/_doc/110返回信息 {"_index" : "ffbf","_type" : "_doc","_id" : "110","_version"

MySQL进阶--存储引擎

目录 一、简介二、什么是存储引擎&#xff1f;三、MySQL中常用的存储引擎1.InnoDB2.MyISAM3.Memory4.三种存储引擎对比 四、存储引擎的选择PS: 一、简介 本文的内容讲的是MySQL中的存储引擎的相关知识&#xff0c;初步认识MySQL中的存储引擎及各引擎的特点~ 二、什么是存储引…

Redis 安装以及配置隧道连接

目录 1.CentOS 1. 安装Redis 2. Redis 启动和停⽌ 3. 操作Redis 2.Ubuntu 1. 安装Redis 2. Redis 启动/停⽌ 3. 操作 Redis 3.开启隧道 3.1 Xshell 配置隧道 3.2 windTerm 配置隧道 3.3 FinalShell配置隧道 4.可视化客户端连接 Another Redis Desktop Manager 1.Cen…

Unity Image(RawImage) 实现按轴心放大缩小,序列化存储轴心信息,实现编译器窗口保存轴心

工作时分配给我的要实现的功能&#xff0c;写的时候遇到挺多的坑的&#xff0c;在此记录一下 效果 放大缩小的效果 2.编译器扩展窗口记录 实现点 1.Json序列化存储图片轴心位置, 放大倍率&#xff0c;放大所需要的事件 2.用了编译器扩展工具便于保存轴心信息坑点 1.Imag…

深度学习:探究Tensor和Numpy

目录 引言 1 pytorch中Tensor 1.1 什么是Tensor 1.2 为什么需要Tensor 1.3 如何创建Tensor 1.3.1 从已有其他数据结构转化创建为Tensor 1.3.2 随机初始化一个Tensor 1.3.3 从已保存文件加载一个Tensor 1.4 Tensor的特性 1.4.1 丰富的常用函数操作 1.4.2 灵活的dtype和…

maven开发利器:idea安装maven依赖分析插件 Maven Helper,谁用谁知道!

大家好&#xff0c;我是三叔&#xff0c;很高兴这期又和大家见面了&#xff0c;一个奋斗在互联网的打工人。 这篇博客给大家介绍一款博主实战开发中一直在使用的pom开发分析利器&#xff0c;教大家玩转maven&#xff1a;使用idea安装 Maven Helper 插件&#xff0c;可以分析依…

企业电子招标采购系统源码Spring Boot + Mybatis + Redis + Layui + 前后端分离 构建企业电子招采平台之立项流程图 tbms

&#xfeff; 项目说明 随着公司的快速发展&#xff0c;企业人员和经营规模不断壮大&#xff0c;公司对内部招采管理的提升提出了更高的要求。在企业里建立一个公平、公开、公正的采购环境&#xff0c;最大限度控制采购成本至关重要。符合国家电子招投标法律法规及相关规范&am…

数据结构-链表

&#x1f5e1;CSDN主页&#xff1a;d1ff1cult.&#x1f5e1; &#x1f5e1;代码云仓库&#xff1a;d1ff1cult.&#x1f5e1; &#x1f5e1;文章栏目&#xff1a;数据结构专栏&#x1f5e1; 目录 目录 代码总览&#xff1a; 接口slist.h&#xff1a; slist.c: 1.什么是链表 1.1链…

java多线程并发面试题总结(史上最全40道)

1、多线程有什么用&#xff1f; 一个可能在很多人看来很扯淡的一个问题&#xff1a;我会用多线程就好了&#xff0c;还管它有什么用&#xff1f;在我看来&#xff0c;这个回答更扯淡。所谓"知其然知其所以然"&#xff0c;"会用"只是"知其然"&am…

用C语言构建一个数字识别卷积神经网络

卷积神经网络的具体原理和对应的python例子参见末尾的参考资料2.3. 这里仅叙述卷积神经网络的配置, 其余部分不做赘述&#xff0c;构建和训练神经网络的具体步骤请参见上一篇: 用C语言构建一个手写数字识别神经网路 卷积网络同样采用简单的三层结构&#xff0c;包括输入层con…

思想道德与法治

1【单选题】公民的基本权利是指宪法规定的公民享有的基本的、必不可少的权利。公民的基本权利有不同的类别&#xff0c;公民的通信自由和通信秘密属于 A、人身自由 B、经济社会权利 C、政治权利和自由 D、教育科学文化权利 您的答案&#xff1a;A 参考答案&#xff1a;A 查…

Visual Studio 快捷键

记录一下VS的快捷键,用Xcode几个星期后回到VS一下子有点乱,还好有条件反射在,过了会就都恢复了 目录 跳转快捷键查找快捷键编辑快捷键代码折叠书签操作记忆来源VS一定要装VAssistX插件,下面的快捷键部分是VX提供的。 跳转快捷键 快速打开文件 Alt + Shift + O 快速打开对…

VSCode C/C++多文件编译配置

多文件编译备忘&#xff0c;带注释的地方都需要注意&#xff01;&#xff01;&#xff01; launch.json文件 {// 使用 IntelliSense 了解相关属性。 // 悬停以查看现有属性的描述。// 欲了解更多信息&#xff0c;请访问: https://go.microsoft.com/fwlink/?linkid830387&quo…

ChatGPT在语言辅助翻译和跨文化交流中的应用如何?

ChatGPT在语言辅助翻译和跨文化交流领域中有广泛的应用潜力&#xff0c;可以帮助人们克服语言障碍&#xff0c;促进跨文化交流和理解。以下是详细的讨论&#xff1a; **1. 实时翻译和即时交流&#xff1a;** ChatGPT可以用于实时翻译&#xff0c;使人们能够即时进行跨语言交流…

LNMP搭建以及Discuz论坛部署

目录 LNMP 编译安装 LNMP搭建 Nginx 服务 MySQL 服务 PHP 解析环境 部署 Discuz社区论坛 LNMP 目前成熟的企业网站的应用模式之一&#xff0c;指的是一套协同工作的系统和相关软件&#xff0c;能提供静态页面服务和动态web服务 L linux系统 N nginx网站服务&#xff0…

社区团购行业的解决方案:重塑业务模式,提升效率和质量

社区团购业务正在中国迅速崭露头角&#xff0c;而随着行业的快速发展&#xff0c;也带来了一系列挑战&#xff0c;包括供应链管理、物流配送、产品质量和用户体验等问题。本文将探讨这些问题&#xff0c;并提出一些可能的解决方案。 一、问题和挑战 1.1 供应链管理 对于社区团…

k8s pod数据存储Volumes

一、说在前面的话 在 Kubernetes 的 Deployment 中&#xff0c;您可以使用多种类型的 Volumes 来管理 Pod 中的数据。 作用是用来共享目录及配置&#xff0c;不用在每个pod里进行配置。 本文主要概述怎么使用HostPath、PersistentVolumeClaim、ConfigMap。 二、k8s有哪些Vol…