使用LM Studio在本地运行LLM完整教程

GPT-4被普遍认为是最好的生成式AI聊天机器人,但开源模型一直在变得越来越好,并且通过微调在某些特定领域是可以超过GPT4的。在开源类别中出于以下的原因,你可能会考虑过在本地计算机上本地运行LLM :

  1. 脱机:不需要互联网连接。
  2. 模型访问:在本地运行模型,可以尝试开源模型(Llama 2、Vicuna、Mistral、OpenOrca等等)。
  3. 隐私:当在本地运行模型时,没有信息被传输到云。尽管在使用GPT-4、Bard和claude 2等基于云的模型时,隐私问题可能被夸大了,但在本地运行模型可以避免任何问题。
  4. 实验:如果你看到了生成人工智能的价值,可以通过测试了解模型的细节并知道还有什么可用。
  5. 成本:开源模型是免费的,其中一些可以不受限制地用于商业。

对许多人来说,运行本地LLM需要一点计算机知识,因为它通常需要在命令提示符中运行它们,或者使用更复杂的web工具,如Oobabooga。

LM Studio是一个免费的桌面软件工具,它使得安装和使用开源LLM模型非常容易。

但是请记住,LM Studio并不开源,只是免费使用

但是LM Studio是我目前见到最好用,也是最简单的本地测试工具,所以如果是本机测试使用的话还是推荐试一试他。

首先进入“lmstudio.ai”,下载并安装适合操作系统的版本:

LM Studio,选择要安装的LLM。

可以通过选择主窗口中列出的社区建议模型之一来实现进行,也可以使用HuggingFace上可用的任何模型的搜索栏查找关键字。

模型搜索列表中可以看到安装/下载文件的大小。请确保下载的大小没有问题。(国内需要魔法)

在屏幕左上角的发布日期栏,是“compatibility guess”。LM Studio已经检查了本地系统,并展示它认为可以在计算机上运行的那些模型。要查看所有模型,点击“compatibility guess”(#1)。点击左边的一个模型,右边就会显示可用的版本,并显示那些根据你的电脑规格应该可以工作的模型(#2)。见下图:

根据计算机的能力/速度,较大的模型将更准确,但速度较慢。并且这个鞋模型中的大多数都是量化的,包含了GGML和GGUF等格式。(具体这些格式可以参考我们以前的文章)

模型下载完成后,(1)在窗口顶部的下拉菜单中选择模型;(2)选择左侧栏中的聊天气泡;(3)打开右侧的“Context Overflow Policy”和“Chat Appearance”。

确保在“Context Overflow Policy”下选择“Maintain a rolling window and truncate past messages”,并在“Chat Appearance”下选择“Plaintext”。

打开“Model Configuration”,然后打开“Prompt Format”,向下滚动到“Pre-prompt / System prompt”,选择“>”符号打开。可以在这里输入系统“role”。也就是说可以设定希望机器人如何行动,以及在它的回答中应该提供什么“技能”或其他特定的品质。这与ChatGPT Plus帐户的“Custom instructions”相同。


继续向下滚动,找到“Hardware Settings”。默认设置是计算机的CPU完成所有工作,但如果安装了GPU,将在这里看到它。如果GPU显存不够,可以将GPU想要处理多少层(从10-20开始)这会将一部分层使用GPU处理,这与llama.cpp的参数是一样的。还可以选择增加LLM使用的CPU线程数。默认值是4。这个也是需要根据本地计算机进行设置。

完成这些更改后,就可以使用本地LLM了。只需在“USER”字段中输入查询,LLM将响应为“AI”。

可以看到LM Studio提供了极好的体验,为ChatGPT提供了一个很好的本地替代方案。LM Studio提供了一种使用OpenAI兼容接口来提供模型的方便方法,这简化了与使用OpenAI作为后端的客户端的集成。

如果你正在寻找一种快速简便的方法来设置和使用具有不同开源模型的聊天或服务器供个人使用,LM Studio是一个很好的起点。

https://avoid.overfit.cn/post/bc8b0a511ea94cad81b581ef5bd19d39

作者:Gene Bernardin

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/228286.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[RK-Linux] 移植Linux-5.10到RK3399(八)| 配置HYM8563支持RTC功能

文章目录 一、HYM8563二、原理图三、设备树四、调试一、HYM8563 HYM8563是一款低功耗CMOS实时时钟/日历芯片,它提供一个可编程的时钟输出,一个中断输出和一个掉电检测器,所有的地址和数据都通过I2C总线接口串行传递。最大总线速度为400Kbits/s,每次读写数据后,内嵌的字地…

nginx_rtmp_module 之 ngx_rtmp_mp4_module 的mp4源码分析

一:整体代码函数预览 static ngx_int_t ngx_rtmp_mp4_postconfiguration(ngx_conf_t *cf) {ngx_rtmp_play_main_conf_t *pmcf;ngx_rtmp_play_fmt_t **pfmt, *fmt;pmcf ngx_rtmp_conf_get_module_main_conf(cf, ngx_rtmp_play_module);pfmt ngx_ar…

58.Gin参数读取、绑定、文件上传

文章目录 一、RESTful API二、Gin获取各种方式传递过来的参数1、获取querystring参数2、获取form参数3、获取path参数 三、参数绑定四、文件上传1、单个文件上传2、多个文件上传 Gin框架在我之前的博客中已经使用过很多次了,但是没有集中介绍过参数读取和绑定等知识…

AR眼镜_AR智能眼镜整机硬件方案定制

AR眼镜的主要模块包括显示、光学模组、传感器和摄像头、主板、音频和网络连接等。其中,光学显示、主板处理器是决定AR眼镜成本的关键,光机占整体AR眼镜成本43%、处理器占整体成本31%。 AR眼镜的主板设计难点在于尺寸要足够小且要处理好散热问题。主板上的…

接口优先于反射机制

在Java中,使用接口通常比反射机制更为优雅和安全。接口提供了一种声明性的方式来定义类的契约,并且能够在编译时进行类型检查,而反射则是在运行时动态获取和操作类的信息。下面是一个简单的例子,说明为什么在某些情况下接口比反射…

服务端监控工具:Nmon使用方法

一、认识nmon 1、简介 nmon是一种在AIX与各种Linux操作系统上广泛使用的监控与分析工具,它能在系统运行过程中实时地捕捉系统资源的使用情况,记录的信息比较全面, 并且能输出结果到文件中,然后通过nmon_analyzer工具产生数据文件…

【JavaEE】多线程(4) -- 单例模式

目录 什么是设计模式? 1.饿汉模式 2.懒汉模式 线程安全问题 什么是设计模式? 设计模式好⽐象棋中的 "棋谱". 红⽅当头炮, ⿊⽅⻢来跳. 针对红⽅的⼀些⾛法, ⿊⽅应招的时候有⼀ 些固定的套路. 按照套路来⾛局势就不会吃亏. 软件开发中也有很多常⻅的 "问题…

Mybatis中的${}和#{}区别

前言 动态 sql 是 mybatis 的主要特性之一,在 mapper 中定义的参数传到 xml 中之后,在查询之前, mybatis 会对其进行动态解析。mybatis 为我们提供了两种支持动态 sql 的语法:#{}以及${} 提示:以下是本篇文章正文内容…

【c++】string的模拟实现

目录 一. 交换函数swap 二. 默认成员函数 构造函数和析构函数 拷贝构造函数和赋值运算符重载 三. 容量相关操作接口 size 与 capacity reserve 与 resize 附:reserve与resize的区别 四. 修改相关操作接口 push_pack append insert 与 erase operato…

软件设计师——数据结构(一)

📑前言 本文主要是【数据结构】——软件设计师——数据结构的文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是听风与他🥇 ☁️博客首页:CSDN主页听风与他 &#x1f304…

Flink系列之:窗口Top-N

Flink系列之:窗口Top-N 一、窗口Top-N二、示例:在窗口聚合后进行窗口 Top-N三、在窗口表值函数后进行窗口 Top-N四、限制 一、窗口Top-N 适用于流、批一体窗口 Top-N 是特殊的 Top-N,它返回每个分区键的每个窗口的N个最小或最大值。与普通To…

时序分解 | Matlab实现DBO-VMD基于蜣螂优化算法优化VMD变分模态分解时间序列信号分解

时序分解 | Matlab实现DBO-VMD基于蜣螂优化算法优化VMD变分模态分解时间序列信号分解 目录 时序分解 | Matlab实现DBO-VMD基于蜣螂优化算法优化VMD变分模态分解时间序列信号分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.利用蜣螂优化算法优化VMD中的参数k、a&…

12、Kafka中位移提交那些事儿

Kafka中位移提交那些事儿 1、自动提交位移2、手动提交位移2.1、同步提交位移2.2、异步提交位移2.3、更精细化的位移管理 Consumer 端有个位移的概念,它和消息在分区中的位移不是一回事儿,虽然它们的英文都是 Offset。今天我们要聊的位移是 Consumer 的消…

千亿露酒市场的未来之“露”

执笔 | 尼 奥 编辑 | 扬 灵 12月15日,以“以美为酿,品致未来”为主题的中国露酒产业发展大会暨露酒价值论坛在“中国酒都”宜宾举办。 近年来,露酒产业发展异军突起,市场销售规模超越黄酒、葡萄酒品类,成为中国酒…

正则表达式IP地址

正则表达式基础语法 正则表达式-字符类 [abc]:代表a或者b,或者c字符中的一个。 [^abc]:代表除a,b,c以外的任何字符。 [a-z]:代表a-z的所有小写字符中的一个。 [A-Z]:代表A-Z的所有大写字符中的一个。 [0-9]&#xff…

人工智能文本分类

在本文中,我们全面探讨了文本分类技术的发展历程、基本原理、关键技术、深度学习的应用,以及从RNN到Transformer的技术演进。文章详细介绍了各种模型的原理和实战应用,旨在提供对文本分类技术深入理解的全面视角。 一、引言 文本分类作为人工…

期末总复习(重点!!!)

一、第6章异常处理 1、什么是异常、什么是异常处理异常是指程序在运行过程中发生的错误事件,影响程序的正常执行。异常并不是一定会发生,默认情况下,程序运行中遇到异常时将会终止,并在控制台打印出异常出现的堆栈信息。异常处理…

在线客服系统定价因素解析:影响价格的关键因素

跨境电子商务公司必不可少的工具就是在线客服系统。企业选择在线客服系统的时候免不了要对不同产品的功能性、价格、服务等因素进行考量。今天这篇文章,我们就来探讨一下在线客服系统的定价因素有哪些?探究市面上的在线客服系统价格各异的影响因素。为大…

Lambda 的表达式作用域(Lambda Scopes)

文章目录 讲一下 Lambda 的表达式作用域(Lambda Scopes)。访问局部变量访问字段和静态变量访问默认接口方法 讲一下 Lambda 的表达式作用域(Lambda Scopes)。 访问局部变量 我们可以直接在 lambda 表达式中访问外部的局部变量&a…

c# bitmap压缩导致png不透明的问题解决

新建.net 6控制台项目 安装System.Drawing.Common包 代码如下 using System.Drawing; using System.Drawing.Imaging;namespace PngCompress02 {internal class Program{static void Main(string[] args){CompressPngImage("E:\Desktop\6.png", "E:\Desktop\6…